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INTRODUCTION

This Annual Progress Report contains investigations on detonation

driven magnetogasdynamic and solid state power generators and related

research problems. The work was conducted under ONR Contract N00014-

81-WR-10107 in the period from February 1 to September 30, 1981.

The electric currents and voltages produced by electromagnetic

induction in explosion driven magnetogasdynamic generators with homo-

geneous external magnetic fields 1 are calculated for two shock flowo

models, (1) the (implosion produced) jet flow v(t) - v H(t) with con-

stant shock speed v0 , and (2) the plane detonation flow with shock

speed v(t) - t- 1 /3 (similarity solution). External load circuits with

resistance R0 and inductance L are considered which are connected

I. i) to the upstream and ii) to the downstream ends of the generator

electrodes so that the magnetic self-fields B of the electric currents

are i) antiparallel and ii) parallel to the external =ic field

[ o It is shown that optmum power is generated for generat..rs with

jet shock flow and load circuits of type (ii), i.e., positive super-

position of induced and external magnetic fields. In this case, elec-

tric energies AE - 10 Joule can be generated with external fields /

Bo  1 Tesla per detonation. The importance of the results in t +

.4
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Chapters II and III for the design of detonation driven generators is

obvious.

One of the main technical problems of explosion driven magneto-

g a sdynamic generators is the requirement of large external magnetic

fields Bo > 1 Tesla, which are difficult to procure in connection with

military applications, For this reason, a solid state power generator

I is analyzed in which the driving electromotoric force is due to electric

polarization in the stress field of an explosion produced shock wave.

The solid is assumed to be a one-dimensional slab between plane elec-

I trodes, which are connected through an external load circuit. The tem-

poral current build-up in the external circuit, due to electric polari-

Ization and electric conduction behind the shock front of the stress
wave, space charge and electric polarization relaxations, is determined

by an inhomogeneous Volterra integral equation. For shocked solids with

cross section of the order of one square meter, energies of the order

AE ~ 105 Joule per pulse can be achieved. This scheme for an electric

I generator, which does not require external magnetic fields, appears to

be promising for experimental investigation (Chapter IV).

An other method of avoiding large external magnetic fields B t
0

1 Tesla is to build an explosion driven MGD generator, in which a weak

external magnetic field B - 10 Tesla is compressed between the plasma

shock front (high magnetic Reynolds numbers Rm - 0 oava) and a copper

liner. The exact relativistic theory of the flux compression HGD gen-

erator leads to two coupled integrodifferential equations which appear

2
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to be unsolvable by analytical methods. For this reason, the electromagne-

tic diffusion and induction in accelerated conductors in external 1 fields

was analyzed in the parabolic diffusion approximation, which is valid for

small relaxation times T = eo/a (T - 10- 18 sec for copper, a - 6xlO7 -i/m).

The conventional boundary conditions (which violate the continuity of the

tangential electric field ) were replaced by new boundary conditions, which

consider the electromagnetic transients outside of the conductor. Thus, a

realistic evaluation of magnetic flux compression and magnetic flux losses

through the plasma piston and the copper liner is accomplished (Chapters V

and VI).

In Chapter VII, a quantum-kinetic theory of the anomalous plasma

heating by high-frequency electromagnetic fields is presented based on the

Maxwell-Vlasov and Schroedinger equations. This investigation has been

carried through in collaboration with visiting Prof. S.H. Kim.

The work on flux compression electric power generators will be com-

municated in the 1982 Annual Report. There, also new types of explosion

IL driven generators will be discussed, which do not require an external

[ magnetic field.

3
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IDETONATION DRIVEN INDUCTION GENERATOR
WITH ANTIPARALLEL EXTERNAL AND INDUCED MAGNETIC FIELDS

I H.E. Wilhelm

Michelson Laboratory, Naval Weapons Center,

i China Lake, CA 93555

I

AbstractI
Based on Maxwell's equations, the electric current and voltage

pulses induced in explosion driven induction generators (R. - uoi vL >> 1)

I with plane electrodes and homogeneous external magnetic field 0 are cal-

culated analytically for two plasma shock flow models, (i) the jet flow

with shock speed v(t) - v0H(t) and (ii) the plane detonation flow with

shock speed v(t) - (2/3)(Eo/Po)it The external load circuit with

-. resistance Ro and inductance L is connected to the flow entrance ends of

the electrodes so that the magnetic self-field B(t) of the generated cur-

rent 1(t) is antiparallel to the transverse external field Bo . It is shown

that the jet flow produces large current and voltage pulses with extended

plateaus, whereas the detonation flow generates considerably smaller and

shorter current and voltage pulses. In both cases, the magnetic self-field

B I(t) of the generated current I(t) is of the order-of-magnitude of 1o, and

its negative superposition on the external magnetic field is not advanta-

I geous for power generation.
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INTRODUCTION

In contrast to the conductive magnetohydrodynamic generator with steady-state

magnetic and flow fields 1), induction generators are based on the electromagnetic

interaction of a conducting flow field with a magnetic field, where at least one of

the fields is transient2) so that voltages are induced due to temporal flux changes

df/dt 0 0. In some induction generators, a detonation plasma with a decreasing shock

velocity v(t) - 0 for t - - is directly injected into the inter-electrode space _),

whereas in more recent experimentsiL odiscontinuous plasma jets are shot across an ex-

ternal, constant magnetic field. The plasma jets v(t) r v H(t) of nearly constant

shock speed v are produced, e.g., by implosion of a dense noble gas between flyer

plates and subsequent expansion through a diaphragm into the generator channel -i, or

by means of a tube like arrangement of the solid explosive resulting in a cylindrical

implosion with large axial shock velocity of the filling gas -.

Detonation driven induction generators have shock velocities v - 104 - 105 m/sec,

external magnetic fields B0 - 1 - 10 Tesla, conductivities a > 104 I-l /m, and flow
energies 1 0v2 . 1010 - 1012 Joule M-3 at pressures p > 104bar (p > 10 g M-3). The

corresponding magnetic Reynolds number Rm is large, whereas the magnetic interaction

number Ri is small,

R =oOVL >> 1 , i " Bo/oV << ,)

3 0 i 0

where L - JVx>/B(. For R > 1, the electric current is restricted to a thin layer

1/2
6 - (t/ a) behind the shock front ( - transit time of flow in o). In view of

1 2 2 6 8the large dynamic pressure y pv compared to the magnetic pressure B0 /2u o - 10 - 10

Joule M- 3 , the efficiency of energy transformation is small, while the performance is

3 significant since currents I - (B0 /o 0)b > 10 Amps (b - electrode width) and energies

4 45> 10 Joule have been produced experimentally per detonation 4,5)

5



Herein, the initial-value problem for a detonation driven generator

is solved in closed form by means of Maxwell's equations, in which the flow

entrance ends of the coplanar electrodes are connected by an external Lo-R

44

Iload circuit (Fig. 1) so that the magnetic field B(t) of the generated cur-

rents I(t) is antiparallel to the external magnetic field B0. Two types of

plasma shock flows are considered corresponding to i) the idealized jet

flow with constant shock speed v0 and ii) the plane detonation flow due to

an explosive energy release E0 per unit area in a gas of initial density po:

Iv
VWt -roH(t) ,x(t) - vo0tH(t),

1 (2)

0 < t < t , , x Wro  ;

* and

v(t) -(2/3)(Eo/o)1/3 -1/3 1/3 2/3

0 < t -)-21/2 (3)
0 0I

where i(t) is the shock front position, and Z is the transit time of the

shock front i(t) in the duct of effective length x, (Fig. 1). The self-

I similar solution (3) is asymptotically correct for larger times t6), but

can be used for t v 0 since the singularity of v(t) at t - 0 is without

physical consequences for generator applications.

The external circuit is assumed to be located at x - 0 (Fig. 1),

where x0 is an effective distance which can be calculated once the geometries

of the inductance L and resistance R0 are specified.

I
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INITIAL-VALUE PROBLEM

Fig. 1 exhibits a one-dimensional model for a detonation driven generator, in

which the shock wave flow v(t) - d5t(t)/dt is initiated at time t - 0 in the plane

x - 0 by explosive charges in the space -x < x < 0 so that the shock front is at

i(t) > 0 for t > 0. The Cu-electrodes in the planes z = ic/2 have the extensions

-x < x < x < w and -b/2 < y < +b/2, and are connected by an external circuit AD

with load R and inductance L . As a result of the 0 interaction of the conducting

shock front (a > 104 0 -i/m) with the external magnetic field 10 W {OB 0 ,0' a current

I(t) is induced behind the shock front BC in a cross section &xy - b6 where

8 - (t/oa)1 /2 is the (small) width of the current layer. The currenC I(t) flows

in the closed loop A. B - C - D A, where the leg BC at *(t) moves with the shock

speed v(t) - d^(t)/dt.

Application of the surface curl equation nx[l] = p 01(t)/b to the interfaces AB,

BC, CD, DA demonstrates - in the one-dimensional approximation neglecting end effects

at y - ±b/2 and x - -x- - that the current 1(t) produces a magnetic self-field in the
0

extending loop volume,

1(t) - {0,- I(t)/b,01 , -x < x< X(t) , jy2 <k Izj , (4)
0 o 2 i

which is antiparallel to the external magnetic field 0o" The total magnetic field

[within the loop volume is

l(t) = (OBo- oI(t)/b,O} -x < , jyj < jz < (5)

whereas 1(t) - 1  outside of this region. Integration of the Maxwell equation VA

-al/at over the cross secti, ABCD of .ie extending current loop yields by Stokes'

theorem

d - .dl + (M ).d -(6) Iat i • dr
8



cn

where

E - E + VxB v  << l/VC° (7)

and v(t) is the velocity field of the sections of the closed loop, at the point

corresponding to the path element d[v(t) - x dX(t)/dt for BC, but V(t) 5 for CD,

DA, AB]. The surface element dS- e cdx forms with dr [pointing everywhere in the

direction 1(t)] a right hand system. By Eqs. (6) and (7)I
dI() (t) fc d [B + b(t)]dz (8)

0 o dt -c dt _c/2 dt 0

since f E*dz - IR (R " plasma resistance), J'Edz - RoI + L dI/dt, and fEdz & 0
D -

for the sections AB and CD of the highly conducting electrodes (aU 108-r/m).

U Accordingly,

!d
(Ro + RI,) I(t) + r{ [L + L)(t)jI (t) cBo dt

where

L(t) = c[x + i(t)]/b > 0 , 0 (t) x , (10)

is the time-dependent inductance of the electrode sections AB & DC of increasing

length Ax - xo + i(t). Multiplication of Eq. (9) by I(t) leads to the conservation

law

2~~~ 1t) 2 1 2 d~) d~)(
dt2 02b dt dt 0

according to which the ohmic power dissipation, the temporal change of the magnetic

energy, and the work on the current sheath per unit time equal the power input U3.

9



The plasma resistance Rp- R(t) is a slowly varying function of t and can be

calculated only via a detailed physical model of the current sheath 6 at x s 1(t).

However, since R is sufficiently large in actual experiments, R + R can be treated

9 as a quasi-constant,

Ro +  (t ) A constant, Ro> Ro + RP (t) = R , Ro>> RP. (12)

For a generalized formulation, dimensionless dependent and independent vari-

ables are introduced by

I with

wit 
R()-I /o T / ( ) A ~)C(3

I = (B/Uo )b , to = (Uoc2/b)/(Ro + R) , A - (Xo/C) + Lo/(uoC2/b).(14)

By Eqs. (9) - (10) and (13) - (14), the electric current I(t) in the explosion driven

I generator is determined by the inhomogeneous initial-value problem with variable co-

efficients:

d + (T)]J(T)I + J(T) 0 < (15)
d-([A 0 + dr)

J(T =0 ) = 0 . (16)

Eqs. (15) - (16) are solved for the jet and detonation flows in Eqs. (2) and

(3), respectively, which define the dimensionless coordinate j(T) of the shock front.

In view of the large flow energy, pv BI/21o, it is not necessary to correct

the above generator model for velocity decreases due to Lorentz and viscous forces.

Furthermore, viscous boundary layers are disregarded since the plasma moves in form

of a rectangular velocity slug through the duct in large Reynolds number flow,

R =pvL/V >> 1.

m lO 10
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IJET-FLOW SOLUTION

For the jet flow, the dimensionless shock front coordinate k(r), 0 and the

transit time i are by Eqs. (2) and (13)

tT T &0Mv 0 0cl2b x R_+RP 17

0 0 )+pv0jic2/
vo  c2bo /b

Since Z(r) > 0 for T 0 0, the initial-value problem (15) - (16) is without singu-

larities, and has the closed-form solution:

o o )-(1+ o)/ o

J(T) - oEl - (1 + o T) 0 0] , 0 < (18)

The transit time in Eq. (17) satisfies the inequality,

x x L

(o/AO)" + [ + >> 1 , for x >> x , L i5 (x /c)ic /b, (19)
00 c 0 c 2 /b M 0 a

which indicates that the independent variable ( 0A o)c may assume large values.

Eq. (18) has the limits:

SJ(') (Fo/Ao)T , (o/Ao)T << 1 (20)

I(I) , ( Q/A > > 1 (21)

f Accordingly, the maximum current is reached only asymptotically for large times,

since J(T) is a monotonically increasing function of 0 4 r<

bo(ll+ I b&0(l + o) (&o/Ao)T >> 1 (22)
MaX 0 0 000

1 0/ +
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The generated voltage, U - R I + L dI/dt, is by Eq. (18) in dimensionless representa-

tion

L0 (0 -1-+(1)) 0 ] Lo/Ro L /o -(1+2Co)/go
U (T) 1 + ([1  (1+ 0 T) + o o o

000 0 0
(23)

where U0  1 0R. Eq. (23) has the asymptotic 
values

Lo/R°  I +2 2 . Lo/Ro o

U(T) [1 - L 0 to A ' L 0 << 1 (24)
t__ A 'A t T I T
o 0 0 0 0 0

L(T) i+ C T >> 1 . (25)
0 0

For 1 + ( /A )T (L /R0 t )(1 + 2C )/A , U(T) assumes a minimum,

o o Lo/R°  1 + 2C°  -(1+Eo/
0000 0 0

00) 0_ 0 (26)Umin 1+ C + 20 [t A
0 0

Accordingly, the maximum voltage value is reached only asymptotically for large times,

Q(0/A 0)T >> 1,

Um o/(1+o) , UR IRo/(l+ o) . (27)
max 0/( o 0 00 0

E For b -lO- m, c Mx 0  10 m, x i m, ao 10a-/m, 1 -

-lc/b6 = 10 , R°  ,L - 4 0wlO Henry, v° a 10 m/sec, B 0 1 Tesla,

S" -5 -4
the characteristics of the generator are: to - 2xlO see, t = 1 see, 2w/10,

A 0 - 11/10, I 0 06/4 Amps, I max  3xlO4 Amps, U Z 6xl0 3volt, (Ul) max  2xl08 Watt,

AE - UR - 104 Joule.

* 12
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1 Fig. 2 shows the current J(t) versus ( /A )T for C 0 2/10 and o 9/10

based on Eq. (19). The distribution J(T) rises steeply within 0 < ( 0 /Ao)T < 1 and

then flattens out into a shightly increasing "plateau" for larger times r. In ex-

periments 4 the "plateau" is more constant or even decreases somewhat with in-

creasing time t, which appears to be due to i) shock speeds v(t) decreasing slightly

with time t, and ii) external circuit leads to the center of the electrodes.

I4
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DETONATION-FLOW SOLUTION

The dimensionless shock front coordinate Z(r), 0o, and the transit time for

the deonation flow follow from Eqs. (3) and (13) as

o2/3 C g1/3c-i _ 2/3 t-3/2 (_ x)3/2 (28)
PO K 0 ' K 0 c

I Since E() > 0 for T > 0, the solution of the initial-value problem (15) - (16) is

I representable in terms of an indefinite integral with regular integrand:

T 3& 1 [1 1/3 -larctan( To1/3
) ]

S1+A-o c 0  dr

J(T) -11/3-1< T < (29)

+C,2 T2/3 )e l /- 0  0arctan( oTI / 3)]
I 1 0

where

L -- ( A ) 1 / 2  (30)

Eq. (29) is an integral functional of a , where

I1/3 . x o L 0 1/2 1XorC) oC2xL

a °  ={M /[-- + b  >> for x >> xlb L. "I c / 0 A0o 0 0 (1

I For smal and large times, Eq. (29) gives the limits

2 2/3 1/3 1(J(T) - 0o 0, a o0 << 1 , (32)

1/3

J(r) - 0 , To / >> 1 . (33)

J(T) has a true maximum Ja at time T - i where dJ(T)/dr = 0 for T T !. By Eqs. (15),

max
3 (28), and (29), Jmxand 9 are given by

I 15
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g at v U0 + I L (34)

r e 3-1s[Tet3-a-arctan(a T 1/3

-1/3 1 + A-1S e 0 0 0 dT

2 J + 1/3 0 f - 1/3 -1 . ( /3,
o + 2 2/3 3& 0 -" arctanta o

IThe generated voltage, U°  RoI + LodI/dt, is by Eq. (29) in dimensionless

representation L0/ 
1 32 -/ /

U(T) -J(T) - t [(l + 3 COT  )J(T) - CoT  1/& 0(U + o 0 ), 0 < I < T.

(36)

The inductive singularity, U(T) -- for T - 0, is due to the divergence of the

selfsimilar speed -- , dj(r)/dT - (2Co/3)-1/3 -- for T - 0, and has, therefore,

no physical meaning.
l - -1 5 -1

Example. For b 10 m 1 c- m, x -10 m, x m, a 10 /m,

4 - 1--5

2.650xi0 m/sec, Bo iTesla, the generator characteristics are: to - 2xlO sec,

i - 1.262x10 -4sec, Co = 2w/10, A° W 11/10, Io - 10 6/4 Amps, Imax - lxl04 Amps,

U a 2x103 Volt, (UI) m 2xlO7 Watt, AE - UI - 103 Joule,

Fig. 3 exhibits the current J(T) versus aoTl/3for C - 2w/10 with A° M 1/4w,m0

10/4w, and 100/4w as parameter based on Eq. (29). In each case, J(T) rises rap-

3 idly to a maximum value and then decays slowly with increasing time. The peak

current Jmax decreases with increasing A (inductance). It should be noted that

-1/3 1/2the distributions J(T) are applicable up to the transit value aT/
0 CD0

[Eq. (28)] which depends on the respective system parameters. Experimental

current oscillograms for the detonation flow- agree only qualitatively with

Eq. (29) since the electrodes were connected in their centers by the external

load circuit.

16
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CONCLUSION

An elementary, one-dimensional theory for an explosion driven in-

duction generator has been developed, in which the upstream ends of the

electrodes are connected by an external R -L load circuit. The formu-

9 las derived for the current I(t) and voltage U(t) permit an optimum gen-

erator design by appropriate selection of the system geometry, flow, and

I load parameters.

3 The jet flow with (about) constant shock speed v(t) a v ° produces

an order-of-magnitude more energy than a comparable detonation flow with

shock speed v(t) = t- 1/3 decreasing with time. Since shock speeds in-

creasing with time are not realizable in the coplanar duct, the jet flow

i is ideal for power generation.

The magnetic self-field B(t) of the generated current I(t) is of

the same order-of-magnitude as the external magnetic field B . B(t)0

considerably reduces the generator performance if the electrodes are

connected at their upstream ends by the external load circuit ( (t) and

Santiparallel).

An optimum power output is achieved by attaching the external load

4 4.circuit to the downstream ends of the electrodes so that B(t) and B are

0
3 in the same direction. For a maximum energy output the parameters o'

1 should be chosen as large and A as small as possible.
00

For the transit period t of the shockwave, explosion driven gener-

ators are generally contained by inertial confinement. For this reason,

no attempt has been made to discuss generator performance for times

3 beyond t.

1 18
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DETONATION-DRIVEN INDUCTION GENERATOR

WITH POSITIVE SUPERPOSITION OF EXTERNAL AND INDUCED MAGNETIC FIELDS

H. E. Wilhelm

Michelson Laboratory, Physics Division
Naval Weapons Center, China Lake, California 93555I

i ABSTRACT

Based on Maxwell's equations, the electric current and voltage pulses

induced in explosion-driven induction generators (R m  0 uovL >> 1) with plane

electrodes and homogeneous external magnetic field B are calculated in closed

form for an external load circuit with resistance R and inductance L con-

connected to the downstream ends of the electrodes so that the magnetic self-

field B(t) of the generated current I(t) is in the same direction as the

transverse external field B . Two plasma shock flow models are considered:
(i) the jet flow with shock speed v(t) - v 0H(t) and (ii) the plane detonation

flow with shock speed v(t) - (2/3)(Eo/P)1/3 t -/3. It is shown that the jet

flow produces large cumulative current and voltage pulses which increase with

time, whereas the detonation flow generates considerably smaller and shorter

45 current and voltage pulses. In both cases, the magnetic self-field B(t) of the

generated current I(t) is of the order of magnitude of B . In case of positive

superposition of the induced magnetic field on the external magnetic field B0

maximum flux changes are obtained. For this reason, in induction generators

the external load circuit should not be attached to the upstream ends or the

Scenters, but to the downstream ends of the electrodes.

1 20,



INTRODUCTION

Induction generators are based on the electromagnetic interaction of an

electrically conducting flow field with a magnetic field, where at least one of

the fields is transient so that voltages are induced in an external circuit

which are due to temporal magnetic flux changes do/dt # 0. An explosion-driven

induction generator with a transient plasma shock flow in a constant external

magnetic field Bo has been analyzed-= when the external R - L load circuit is

attached to the flow entrance ends of the electrodes. In this case, the self-

magnetic field B(t) of the generated current I(t) is antiparallel to the trans-

verse external magnetic field B so that the magnetic flux changes d/dt during0

the transit time i of the flow are reduced.1) Herein, a novel explosion-driven

induction generator with optimum magnetic flux changes is proposed, in which

the external R - L load circuit is connected to the flow exit ends of the
0 0

3 coplanar electrodes so that the induced magnetic field B(t) of the current I(t)

in the shock front current layer and the electrodes can superimpose themselves

positively on the external magnetic field B . This effect is quantitatively

significant since B(t) and B are parallel and of the same order of magnitude.5 0

Thus, considerably larger current, voltage, and power pulses are induced than

in the antiparallel B° - B case.

In induction generator experiments, the external R - L load circuit is0 0
usually attached to the center of the electrodes. 2 3, In earlier experiments,

a detonation-produced plasma with a decreasing shock velocity v(t) - 0 for t

is directly injected into the inter-electrode space,- ) whereas, in more recent

experiments,-.4) discontinuous plasma jets are driven across an external,

constant magnetic field Bo. Plasma jets v(t) a v H(t) of nearly constant shock
0 0

3 speed v° are produced, e.g., by implosion of a dense noble gas between flyer
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plates and subsequent expansion through a diaphragm into the generator channel,-3)

or by means of a tube-like arrangement of the solid explosive resulting in a

cylindrical implosion with large axial shock velocity of the filling gas.4 )

Detonation-driven induction generators have been operated with shock veloci-

ties v -i 10 4 _ 105 m/sec, external magnetic fields B 0- 1 - 10 Tesla, conductivi-o
flow i10 1012 Joule m a rsueties a > 10 4 Q-1l/m, and flow energies jLv - 1v 1 - 101 ol -3 a rsue

p > 10 4 bar (p > 102 kg m- 3 ) . The corresponding magnetic Reynolds number R

is large, whereas the magnetic interaction number R is small:

R =ovL >> 1 , Ri - B2/VoPV 2 <<1 , ()

where L - 17B/Bj. For R >> 1, the electric current is restricted to a thin

layer 6 - (t/ 0 a)1 / 2 behind the shock front (£ - transit time of flow in B0). In
1 2

view of the large dynamic pressure f pv compared to the magnetic pressure

B2  6 8 -3
B0/2u° - 10 - 10 Joule m- , the efficiency of energy transformation is small,

while the absolute performance is considerable since currents I - (B /1 )b >
40 0

104 amps (b - duct width) and energies U-1 > 104 Joule have been obtained experi-

U mentally per detonation.
3- 4)

3In the following, the initial-value problem for a detonation-driven generator

is solved in closed form by means of Maxwell's equations, in which the downstream

ends (x - x0) of the coplanar electrodes are connected by an external L° - R°

load circuit. In this case, solutions for the magnetic field B(t) of the

generated currents I(t) exist which are parallel to the external magnetic field

B (Fig. 1). Two types of plasma shock flows are considered corresponding to

i) the idealized jet flow with constant shock speed v0 and ii) the plane detona-

tion flow due to an explosive energy release E0 per unit area in a gas of

initial density po:

v(t) VoH(t) , i(t) - votH(t) , (2)

0O< t x 0 -o/V o ,0
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and

I v(t) = (2/3)(Eo/Po) /3t-1/3 x(t) = (Eo/po) /3t2/3 (3)

0 < t =(E /P )-1/2x3/2
0 0 0

where i(t) is the shock front position, and £ is the transit time of the shock

front i(t) in the duct of effective length x . The self-similar solution (3)

is asymptotically correct for larger times t,!)- but can be used for t > 0 since

the singularity of v(t) at t = 0 is without physical consequences for generator

applications.

The mechanical stability of the generator during the shock transit time

is provided for by inertial confinement of the duct through high density plaster.

No attempt is made at discussing the electrical output for times t > E of the

explosive disintegration of the generator. The external circuit location x0 is

an effective one, which can be calculated once the geometries of the inductance

L and resistance R are specified.

I-,II
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INITIAL-VALUE PROBLEM

Figure I exhibits a one-dimensional model for a detonation-driven generator

fin which the shock wave flow v(t) = di(t)/dt is initiated at time t - 0 in the

plane x = 0 by explosive charges in the space x < 0 so that the shock front is

at x = i(t) > 0 for t > 0. The copper electrodes in the planes z = -c/2 have

the extensions x > x < - and -b/2 < y < +b/2 and are connected by an external0

circuit CD with load R and inductance L at the flow exit end x = x . The
0 0 0

entire system is embedded in a homogeneous magnetic field B°  {0,B 0 ,O}. As a

result of the v x B interaction of the conducting shock front (a > 10 Q /m)

with the external magnetic field Bo, a current I(t) is induced behind the shock

front AB in a cross section AxAy = b6, where a ( 0/o a)1 /2 is the (small) width

of the current layer. The current l(t) flows in the closed loop A B - C

D - A, where the leg AB at x - i(t) moves with the shock speed v(t) di(t)/dt.

Application of the surface curl equation U x [B = P 0 tW° b to the inter-

faces AB, BC, CD, DA demonstrates - in the one-dimensional approximation

neglecting end effects at y = ±b/2 and x - x - that the current 1(t) producep0

a magnetic self-field in the extending loop volume,

i BMt - {0,Uol(t)/b,0} i (t) < x < x°  , y[ < j zj <- (4
0 2 2

which is parallel to the external magnetic field 1 if I(t) > 0. The total

magnetic field within the loop volume is the positive superposition

B(t) - {0,Bo+uoI(t)/b,0} , i(t) < x < xo  , Y < , iz < , (5)

whereas i(t) - 1 outside of this region. Integration of the Maxwell equation

[ x -l/3t over the cross section ABCD of the extending current loop yields

by Stokes' theorem

3 25
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L

d dS + (v xB).dr , (6)

where

E E + v X B v < 1/p 0  , (7)

and v(t) is the velocity field of the sections of the closed loop, at the point

corresponding to the path element dr ['(t) = ' di(t)/dt for AB, but (t) - 0 forx

CD, DA, CB]. The surface element dI = +e cdx forms with di (pointing everywhere
Y

in the direction t(t), a right-hand system. By Eqs. (6) and (7)

x___dBc +c/2 di(t) [

S dI(t) -c f o dB( dx + f / "-o + 9(t)]dz , (8)
0 0 dt i(t) dt -c/2 dt 0

B, D
since f E dz -IUp (RP - plasma resistance), f Edz - RoI + L0 dI/dt, and fEdz 4 0

A C 8 -1
for the sections BC and DA of the highly conducting electrodes (a Cu- 10 a2-fin).

Accordingly,

(R + RP)I(t) + iL + L(t)]I(t)} - cB d(9)

where

L(t) - P c[xo - (t)]/b > 0 0 < i(t) < x °  (10)

is the time-dependent inductance of the electrode sections AD and BC of decreasing

length Ax - x - i(t). Multiplication of Eq. (9) by I(t) leads to the energy
0

I conservation law
2 2 "o__ 2 it)t

(R R) + AL(1 [L Lw i n ... F2t + 1  t BcAi
(R+ 2 2 2b dt dt 0

The plasma resistance RP - R(t) is a slowly varying function of t and can

be calculated only via a detailed physical model of the current sheath 6 at

x i(t). However, qince R is sufficiently large in actual experiments,
0

R + R can be treated as a quasi-constant,
*1

0
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R+ Rp(t) zconstant R > RP ; R4+p(t)-R , R >>R (12)

For a generalized formulation, dimensionless dependent and independent

I variables are introduced by

I J(r) = 0(t)I , r = t/t , 4(T) = (t)/c (13)

with

1 0 - (Bo/Uo)b 0t o 0 0 C2/b)/(Ro + Rp) , A ° - (xo/c) + Lo/(oc 2/b) . (14)

I By Eqs. (9), (10), (13), and (14), the electric current I(t) in the explosion-

driven generator with positive external and induced magnetic field superposition

is determined by the inhomogeneous initial-value problem with variable coeffi-

cients:

d QA -(T)]J(T)} + J(T) - d T) 0 r , (15)

J(T = O) =0 (16)

Equations (15) and (16) are solved for the jet and detonation flows given by

Eqs. (2) and (3), respectively, which define the dimensionless coordinate &(t)

of the shock front.

In view of the large flow energy, Pv >> B 2 o , velocity decreases due

to Lorentz and viscous forces are neglected in the above generator model. Further-

more, viscous boundary layers are disregarded since the plasma moves in the form

of a rectangular velocity slug through the duct in large Reynolds number flow,

mAR pvL/P >> 1.

I
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JET-FLOW SOLUTION

For the jet flow, the velocity and coordinate of the shock front are given

in Eq. (2). The dimensionless shock front coordinate (T), o9 and the transit

time i are, by Eqs. (13) and (2),

v pc2/b x R + Rp
0 o( 0 - o(

0 o Ro c R+ Rp v 2/ (17)

The initial-value problem (15) and (16) has for (T) - E r a closed-form solution,

which is well behaved:

o Eo 0 (1-E )/oJ(T)- E -- - [l- (1 - T To0 0 , 0 < T< (18)

where

liM J(T) - Zn(l -r) < T - <1 . (19)
E o A

The critical time T defined by Eo7/Ao - 1 is not attainable within the transit

period z since

A L
+ T < T for L > 0 (20)o oXo/b) 0

For short times T 0 and the maximum time , Eq. (18) gives, respectively,

the limits

J()- (o/o)r , (o/A) << 1 , (21)
0 0 0 0

Jmax --- (1 - (1- 0- 0(a] , T (22)

Equation (22) represents the maximum generator current for arbitrary C > 0 and

leads to the special formulas
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Jmax ao/(i - &) for 0 < 1 , L 0 < CX/b ,(23)

Jmax n(l < - for o 1 (24)

0

The generated voltage, U = R I + L dI/dt, is by Eq. (18) in dimensionless repre-
o o

sentation (U =1 0Ro)

o o
U(T - -T o 0 (- Lo/Ro )(o & oEu( &0 1 ]-< 1-o" (-°I° +  o -o - TA (i A- (i2o)Aa i- ~ ~ 1 r0 0 0 0

0 < T < ,(25)

where

li U(T) -n(l- T) + - A (1-A (26)

Iand

Lo(R ° [1 + - ( ]o T+Lo/Ro T&2 W-To27
00 A 0 t 0 00 0mx A A t0  A (27)
o o 0o/0 0o

Umax 1 - 1- i- 0)I °I° o+-Fo Ao- -(1- --r)(- o/o,

T = "T . (28)

For special cases, the maximum voltage is given by simpler formulas,

max (- - for 1 , L<< uocxo/b (29)

L /R
x(0 0 < for -1 (30)Umax  Zn(1A ;)+ A(l -A0

SExample For b - 10-1 m, c - 1 m, X0 - I m, o 10 5 Q-llm, Rp a-c1c/b =

-2 -1 -6 4S0- ,fl R+RP- 2 x 10- Q, L°  4w x 10- Henry, v° W 10 m/sec, B.

1 Tesla, the characteristics of the generator are: to 2w x 10 sec, -

10- 4 sec, &o M 2w/10, A° - 2, I°  10 6/4 amps, I a 1 x 105 amps, U a

2 x 10 volts, (UI) a 2 x 10 watts, AE = UTI - 105 joules.

max-
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Figure 2 shows the current J(T) versus (0 /A )T for &- 2v/10 and &0

I9/10 in the case of L p ocx lb so that T based on Eq. (18). While for9/1 i te as 0fL

&o 2w/10 the current rises steadily to J max 2/(10 - 2n) - 1.690, J(T) -.

nearly throughout the interval 0 < T < T for &o - 9/10, and the sharp rise to

m - 9 occurs not until the very end T ! of the flow transit period. Itmax

should be noted that the generator produces in each case average currents

I > 1° in excess of the normalization current 10 = (B0 /P0 )b. Experimental

current oscillograms are not available for comparison, since the advantages of

a generator with a load circuit attached to the downstream ends of the elec-

trodes have apparently not yet been recognized.

I

'I
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S

I
DETONATION FLOW SOLUTION

For the detonation flow, the velocity and coordinate of the shock front areI
given in Eq. (3). The dimensionless shock front coordinate (r), co, and the

transit time T are, by Eqs. (13) and (3),

2/3 -1 E0 1/3 uo0c
2/b 2/3 3/2 'o 3/2< o '  -c. C-) C + ) , - C'(-2) . (31

o(T 0 T0Po R+ RP 0 c (1

The initial-value problem (15) and (16) has for &(T) E 0oT2/3 a well-behaved

solution involving an indefinite integral with regular integrand:

J() - 1+ 1 + A10 [(1 + ao Tl/3)/(1 - ao 0  0 e o dJT1)3-1+ -11/

2 2/3 1/3 1/3 3/2ai & -3&- T /(1 - a20T2/3[( + a 0l13)MI - a 0l13]31a Oe-3 0l/

0 < T4 ,(32)

where

ao 0 /A 0)1/2 (33)

The critical time t defined by a0 r/3 = 1 lies always outside the transit

period i since

OL-o L 3/2
03 -(1+ - a , < i for L > 0 (34)I 00ICX/

S- For short times T - 0 and the maximum time i, Eq. (32) gives, respectively, the

limits

Jo - 2 2/3 1/3 (35)
J(T) o a , a1

Smax -J( ),T- , (36)

where J(r) is given by Eq. (32). In particular, for small inductances Lo,
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I
Jme o/[I(^o/Ao )1/2 -o ] for Eo 0 3 2/3 A ,/ Lo << pocxo/A • (37)

Eq. (32) has positive, monotonically increasing solutions J(-t) > 0 for r *(0,t).

The magnetic field t(t) of this current is in the same direction as the external

magnetic field B (positive superposition).

The generated voltage, U - RoI + LodI/dt, is by Eq. (32) in dimensionless

representation (U° W R 0 ),

Lo/R o  (2/3)Co - [T1 3 _ (2/3)A ]J(t)
U 0 { 22/3) 1/3 1 , . (38)

(o Ao(1- t )

The inductive singularity, U(T) - for T - 0, is due to the divergence of the

self-similar speed,5  dC(T)/dT (2Eo/3)T-1/3 - - for T -> 0, and has, therefore,

no physical meaning.

Example. For b - 10- 1 m, c - 1 a, x 0- m, oa 105 Q-/m, R Ao-c/b60 p
-2 -l,-6R-

10 R +R -2x10-1  , L x 10 - 6 Henry, v(t - 10 - 6 sec)- 2.650 x

104 m/sec, B - 1 Tesla, the generator characteristics are: t 0 2w x 10- 5 sec,0 0
1-4 o16/4 304

1.262 x 10 sec, CW 2w/10, A°  2, I°  10 /47r amps, I max a 0 aps,

U max 46x103 volts, (U)max * 2x108 watts, AE - Tit - 104 joules.

Figure 3 shows the current J(T) versus (& /A ) 1/2T / 3 for CO - 27r/10,

go - 9/10, and A° - 2 based on Eq. (32). In each case, J(T) increases monoto-

nically from 0 to its final value Jmax at transit time T, where (to/A ) 1/2 1/3

(Xo/A 0 c) 1 / 2 - V/2 for x0 - I m, c - 1 m, and A0 - 2. On the average, the pro-

duced currents T < 10 are smaller than the normalization current I0 M(B /o)b.

; r I Comparison with Fig. 2 indicates that J(T) of the detonation flow is by an order

of magnitude smaller than J(-t) of the jet flow.

3
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CONCLUSIONS

An eleci-omagnetic theory for an explosion-driven induction generator has

j been developed in which the downstream ends of the electrodes are connected by

an external R - L load circuit. The formulas derived for the current I(t)

and voltage U(t) permit an optimum generator design by appropriate selection

of the system geometry, flow, and load parameters.

The jet flow with (about) constant shock speed v(t) Z v produces consid-

erably more energy than a comparable detonation flow with shock speed v(t) M t- 1 / 3

decreasing with time. Since shock speeds increasing with time are not realizable

in the coplanar duct, the jet flow is ideal for power generation.

The magnetic self-field B(t) of the generated current I(t) is of the same

order of magnitude as the external magnetic field B . The induced magnetic0

field i(t) considerably increases the performance of generators with shock

flow, since it superimposes itself positively on the external magnetic field B0

if the electrodes are connected at their downstream ends by the external load

circuit (B(t) and Bo in the same direction for optimum magnetic flux changes).

An optimum power output is achieved by (i) attaching the external load

circuit to the downstream ends of the electrodes and (ii) driving the generator

with a jet shock flow. For a maximum energy output, the parameters C 0o, 0

should be chosen as large as possible, and A should be chosen as small as

[i possible.

. !
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POWER GENERATION BY SHOCKWAVE INTERACTION WITH SOLIDS

ELECTRICALLY POLARIZABLE BY STRESS

H.E. Wilhelm

Michelson Laboratory, Naval Weapons Center, China Lake, CA 93555

Abstract

An elementary theory of the interaction of shock waves with

solids which are electrically polarizable by stress is given and

discussed with regard to the generation of electric power pulses.

The solid is assumed to be a one-dimensional slab between plane

electrodes, which are connected through an external load circuit.

It is shown that the temporal current build-up in the external cir-

cuit, due to electric polarization and electric conduction behind

the shock front of the stress wave, space charge and electric po-

j larization relaxations, is determined by an inhomogeneous Volterra

integral equation. The latter is solved analytically, and current

I pulse forms for incident step-shaped stress waves are calculated.

For shocked solids with cross section of the order of one square

meter, energies of the order AE 10 5 Joule per pulse should be

Iachievable.

* 37

7



r

INTRODUCTION

Although electric energy pulses of 104 Joules and larger have been

produced in explosion driven induction generators , the requirement

of large external magnetic fields of at least I Tesla renders these mag-

netogasdynamic generators unsuitable for many applications, in particular

since the prospects for self-excitation of such magnetic fields during

pulse times of the order 10- 5 sec are not promising . For these reasons,

other methods for conversion of chemical energy of explosives into elec-

tric energy have to be found. E.g., such a "non-magnetic" power supply

could be used to produce the magnetic field required for magnetogasdyna-

mic generators.

Not only piezoelectric crystals such as tourmaline or ferroelectric

crystals such as lead circonate titanate, but also a large number of

other solids become strongly electrically polarized when subject to pres-

sures p > 104 bar. Such materials are, e.g., electrets, semiconductors,

alkali halides,plexiglas, polysterene - These solids simultaneously

develop good to metallic electrical conductivities when subject to pres-

sure p - 10 -106 bar, due to nonthermal ionization by overlapping of at-

omic wave functions at extreme pressures-!). Similar to the chemical

j polarization field in a battery, the electric polarization caused by the

stress shock wave in the solid drives an electric current pulse through

an external circuit attached via electrodes (transverse to the polariza-

I tion vector) to the solid.

The interaction of a shock wave with solids, which are electrically

polarizable by stress, appears to have potential for the generation of

electric power pulses. Table I gives the stress polarization coefficient)

f, the dielectric permittivity ) - eeo0 the density p, and (dimensional
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TABLE I: Order-of-magnitude estimates of stress polarization P, electric

field E, current I, and energy AE for a stress polarizable slab 
(A = 1 m 2

a - 10-2 m) subject to a shock wave with speed v = 10 3m/sec.

Quartz BaTiO3  Rochelle Salt

f[A sec/N] 2.3x10- 12  1.0X10-10  4.0x10-10

p[kg m- 3] 2.65x103 6.02x103  1.77x10 3

6[N/M2 ] 1.3x109  3.ixl09  0.9x109

[4A sec/Vm] 4xlO-ll 2xlO- 8  9x10-11

P[A sec/M2 3.Oxl1-3 3.1x10-1  3.lxl0-1

E[V/m] 7.6xl0 7 i.5x 107  3.9x 109

I[A] 3x 102  3x 104  3x 104

I E[J] Ix1O 5x106  1x108

I

I

A

4 
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1 2

analysis) order-of-magnitude estimates of the stress amplitude a T pv

electric polarization P - of, electric field E - P/c, short circuit current

I - APv/a, and electric energy &E - (P /2E)Aa for one piezoelectric and two

ferroelectric slabs of cross section A = 1 m and thickness a 10 m in case

o f a stress wave with (moderate) speed v - 10 3m/sec. It is seen that E

I of quartz is of the order of, E of BaTiO3 is below, and E of Rochelle salt

is above, the dielectric breakdown field A). While the generated voltages

V - Ea are large, the generated currents I over an area A - 1/m2 are only

moderate, but the energy pulses AE are significant. Furthermore, these

examples show that a stress polarization generator can be operated both

below and in the breakdown regime.

The electric polarization of solids by stress shock waves is also of

considerable basic physical interest. Attempts at a shock wave interaction

theory with stress polarizable solids (short circuited) were made by Alli-

son 7), Zeldovich 8) and Ivanov -) under various phenomenological assump-

tions and compared with experimental data from piezoelectric and ferroelec-

tric pressure transducers -). The applicability and limitations of these

4,7,8,9)theories have been the subject of extensive discussions , which in-

dicate that the problem is not completely understood from first principles.

Herein, a theory of the interaction of stress shock waves with (non-

ferroelectric) stress polarizable solids is presented based on Maxwell's

equations, when the external circuit contains an ohmic load. It is shown

that the electric current pulse I(t) is determined by an inhomogeneous Vol-

terra integral equation of convolution type. Closed-form solutions are ob-

tained for the generated current I(t) by taking into consideration the dif-

ferent time scales at which electric space charge and electric polarization

by stress develop in the solid. A
40
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The folloving shock wave interaction theory with solids is in general

not applicable to ferroelectric solids (except for rough estimates). Ferro-

electrics exhibit large permanent electric polarization and a pronounced

hysteresis effect so that the electric displacement D = D(E) is no longer a

linear but a strongly nonlinear function of the electric field E (a hyster-

esis theory for ferroelectrics is not available).

I41
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I POLARIZATION AND CHARGE BUILD-UP

dioeIn unstressed shock polarizable (non-ferroelectric) solids, the electric

dipole moments of the molecules add up to a zero vector, whereas under stress

the dipoles are displaced preferentially in one direction so that a net polar-

I ization results. This is illustrated in Fig. la (a = 0) and Fig. lb (a 0 0),

which depicts the unstressed and stressed dipole configurations in a quartz

crystal subject to a stress component a which is perpendicular to the optical

I axis. In Fig. ib, I points to the left, but I would point to the right if

the crystal were rotated by 1800. For this reason, the polarization vector

may point in or opposite to the direction of propagation of the stress wave

depending on the chosen orientation of the crystal. For a stress wave a(x,t)

propagating in the positive x-direction, the designation "±" polarization is

I used if points into the ±x-directions. The resulting direction of the cur-

rent I(t) in the external circuit is shown in Fig. 2a for the "4" polariza-

tion, and in Fig. 2b for the "-" polarization, based on Kirchhoff's law

3 f0.

The stress polarization generator model (Fig. 3) consists of a shock

3 polarizable solid of cross section A and thickness a between plane electrodes

at x - 0 and x - a, which are connected through an external circuit with load

I > 0. At time t - 0, an explosion produced, step shaped stress wave o(x,t)

With amplitude & and propagation speed v impinges normal onto the surface

x - 0 of the solid so that, at time t > 0, tha shock front is at x - vt and

the stress distribution in 0 < x < a is

O(x,t) = ll(vt -x) , t > 0, (i
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IJ

where

H(vt -x) 1 , 0 < x < vt , (2)

0 , V< x< a

is the Heaviside function (compression of the slab Ax a neglected) 7,8,9)

I Behind the shock front x - vt, the polarization P(x,t) builds up according

to a relaxation process with characteristic time T,

I -p + jP (3)
at t -r

with

I P(x,t -0)- 0 , (4)

as initial condition for the "±" polarizations (Fig. 2a,b), since the solid is

initially unpolarized and unstressed. In view of Eq. (1), the solution of

.1 Eqs. (3) - (4) is

P(x,t) - ±fo(l - e-(vt-x)/vTJH(vt - x) . (5)

Accordingly, P(x,t) drops exponentially to zero for x - vt (shock front), and

P(x,t) - ±f& in Oc x vt for t >> T. The polarization relaxation

time is of the order-of-magnitude r - 10-6 see. 4

I Due to shock polarization P(x,t) in the stressed region, which is absent

in the unstressed region, the electric displacements behind and ahead of

the shock front x - vt are 10)I
D1  E 1i + P , 0 < x < vt (6)

D2 2E , vt x < a (7)
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(4

where 10)

C 1,2 C o (1 + '1,2 )  (8)

so that e K 1,2E1,2 are the polarizations due to the electric fields E1 ,2 (x,t).

From VA~i - I + sb/at follows V.(* + 31/3t) - 0, and by integration

j + 3D 1 At - I(t)/A , 0 < x < vt , (9)

3D 2/Dt I 1(t)/A , vt < x < a , (10)

I where

j - aE 0 < x < vt , (11)

is the conduction current density behind the shock front x - vt where charge

I carriers are produced by pressure (conductivity a).

The x-integration "constant" I(t)/A in Eqs. (9) and (10) is the total

(conduction + displacement) current density, i.e., I(t) i 0 is the net current

5 in the external circuit. The space charge convection current density is neg-

lected since it is relativistically small for v << c.

5 From V-51 - P1 and V.1 - -ap1/at result two coupled partial different-

g ial equations for the space charge density pl(x,t) and the electric field

E1 (x,t) in 0 < x < vt,

I 3E1E &f e(vt-)/vrH( v (12)
C- - e- = t 1x( p

ax at (13)

by Eqs. (5), (6), and (11), respectively. The upper and lower signs in Eq.

(12) refer to the "" polarization cases. Accordingly, the space charge
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I build-up in the stressed region is determined by

l + !- . T_ af e- (Vt-X)/VTH(vt - x) 0 < x < , (14)-at T 0 T oVT1 0

P 1(x,t - O) - 0 . (15)I Hence

.1 (x,0 VT_ ) e- (vt-x)/v -e (vt-x)/vT°]H(vt x) (16)I Pl(xt)j  + v(t e- v - x)O )(16

E 1 (x,t) - E1 (vt,t) - (VT 0 /E.)Pl(X,t) , (17)

for the "±" polarization cases. The space charge relaxation time is defined

by

I 0 - Cl/O . (18)

I Substitution of Eq. (17) into Eq. (9) shows that the x-integration "constant"

E1 (vt,t) is determined by

dEl(vtt) El(vt't) I(t) (19)

dt T Ac1

E (0,0) . (20)

Hence

- t +t/T
E (vtt) (Ac 1)-e of I(t')e 0dt' • (21)1 1 0

Thus, we obtain the electric fields behind and ahead of the shock front as in-

I tegral functionals of I(t):

- t/o +t'/T - (Vt-XW T
El(xt) A - f I(t')e °dt' a f [e-(vt-x)VT 01,

A1 0 c1 (t,-)

0< x < vt (22)
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t
E2 (x,t) (A 2) -lf tI(t')dt' , vt < x < a (23)

0t
for the "±" polarization cases. Since V- 2 = 0 in the unstressed region,

Eq. (23) obtains by direct integration of Eq. (10).

The surface charge density p*(vt,t) - '[D] vt of the shock front is by

( Eqs. (5), (6), (7), (22), and (23)

* (vt,t) - (Ac 2 )-lf tI(t)dt ' 
- (Ac)- e Of I(t')e 0 dt' . (24)S0 0

It is obvious that in general p*(vt,t) 0, i.e., p*(vt,t) - 0 only if 1  C 2

and To - 0. Therefore, the assumption D1 (x,t) - D2(x,t) for x - vt made in the

theory of piezoelectric and ferroelectric pressure transducers is in general

incorrect.I
I
'I

'I
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INTEGRAL EQUATION FOR I(t)

The electric current pulse I(t) in the external circuit is determined

by Kirchhoff's law #Edr - 0 for the closed current loop with load R in

Fig. 3, where E(x,t) in the solid is given by Eq-. (22) and (23) and hR .d

+ IR. Thus, we obtain for the transient current I(t) the inhomogeneous

Volterra integral equation:

t -(t-tl)l _ ta t

v_ f e 0 I (t)dt' + a- tf I(t'dt' + RI(t)
1 0 Ac2  0

%fvr 0 e -( ' - -roe

- ET - T 0

The upper/lower signs refer to the 'Y' polarization cases. A more general re-

presentation of this integral equation is achieved by introducing the dimension-

less variables

-(t) =()/I , = a (af/el)A ; t = t/t , to =t ; (26)

jt and

a - a/v , R - R/(a-lvr /A) , M C 1 /r 2  , 6 - To/-, (27)1 -
as characteristic dimensionless parameters (-l vT/A - internal resistance of

j solid slab of thickness v traversed by shock during polarization relaxation

time T). By means of Eqs. (26) and (27), the determination of J(t) is reduced

I to the initial-value problem:
):i I r-t '

tf - )/J(t')' + e-t f j(t')dt' + RJ(t)

a 0e
- ±6 (1- e--e) (28)
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I

I J(t-O) - 0 (29)

I By means of the Laplace transformation and the convolution theorem, the integral

equation (28) is reducible to an inhomogeneous differential equation of first

order for Y(s) - L[J(t)] with variable coefficients of not more than third order

in s. The general solution can then be obtained by inversion, I(t) - L-1[C(s)].

It should be noted that in the derivation of the integral equations (25)

and (28), the current I(t) has been assumed to flow in the +x - direction (Fig. 3).

Accordingly, one exspects solutions I(t) < 0 for ""polarization and solutions

I(t) > 0 for "-" polarization.

II

I
I
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ANALYTICAL SOLUTION

For electrical power generation, the main interest is in shocked solids

with sufficient pressure ionization so that 6 = T IT << 1. For this reason,
o

analytical solutions are derived for the case of small space charge relaxation

times Trd compared with the polarization relaxation time T. The solution for

large space charge relaxation times, 6 = To/I >> 1, can also be given in closed

form 11)

For fast space charge relaxation, Tr << T, the initial-value problem (28)

- (29) reduces for the polarizations P in (+) and opposite (-) to the direction

of shock propagation to (6 << 1):

a C -'t
6 f J(')dt' + (R + t)J(t) ± ±6(l - e- ) (30)

0

J(t-O) = 0 . (31)

Eq. (30) consists of a cumulative voltage term, the ohmic voltage loss, and a

delayed stress polarization voltage source.

I By means of the transformation,

J(t) - *()e(C'6)t] , (t-O) - 0 , *'(t-O) - 0 , (32)

1,t
the integral equation problem (30) - (31) is reduced to an initial-value problem

for a first order differential equation:
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dt (33))(R + t)k + -E R+a 6( (33)

I (t-O) = 0 (34)

Eq. (34) implies d*(tO)d;t-O by Eq. (33). The solutions of Eqs. (33) - (34)

are for the "" polarization cases

-&(a+) t L(a+R)-i -'
*(t) - ±6(R + t) f (R + (1 - e )e- ( d/ t d , 0 t <a.

0
(35)

The corresponding ct.rrent solutions J(t) for the "_T" polarization cases are by

Eq. (32):
t L, (a+R)-I et,_(l)d '

e-(1 -_e c(a - t) 0 ( __+ _) (__-J(t)R + t S 2  . 0

(1 + t) e

0 < t a (36)

These solutions can be extended to times t > a beyond the transit time t a if

the assumption is made that the shock wave is not reflected at the electrode x - a.

iEq. (36) indicates that the integral term decreases much faster with in-

, creasing resistance R than the ordinary stress polarization term. The "+"

polarization current is - by magnitude - as large as the "-"polarization current,

[J l [(f)l , 0 < t < a (37)

Since the integral term is dominant by magnitude, the solutions of Eq. (36) are

J(t) 5 0 for the - polarizations and times t < a.

I
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I

At the transit time t = a, the integral term in Eq. (36) vanishes, and

at this particulam instant the current is given by

J(t-a) = ±6(l - e-a )/(R + a) (38)

The solution in Eq. (36) shows that the (dimensional analysis) estimate

I ~ APv/a (Table I) is correct for t < a/v and Ra M 0-1a/A - R, since I - (Ea/R 2)I

M( 1/c 2 )(Ra/R) 
2APv/a by Eq. (36). For power applications external resistances

R - R of the order of the slab resistance are of main interest.
a

Fig. 4 shows computer calculations of current pulses T-J(t) ("±" polariza-

tions) versus time 0 < t < a for R I and a - 1,2, ... 10 (S/E - 10 - 2 ) based on

Eq. (36). The pulse height IJ(t)Imax increases considerably with increasing

a - a/vT, i.e., if the slab width a is made larger and larger compared with the

distance vT travelled by the shock wave during the relaxation time T (saturation

for a >> vT).

The generated currents J(t) are large for R < 1, but decrease considerably

(about - R-) with increasing R > 1. The steep rise of the current J(t) within a

time t s i0-1, i.e., t 14 T/10 is remarkable. Apparently, the complete build-up

of the electric polarization field is not required for the development of the

maximum current flow J(t) if T << T , since the electric polarization fields are

already very large for t T t/10.

I
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I CONCLUS ION

A one-dimensional theory of a solid state power generator has been pre-

sented, in which the electromotoric force is produced by electric polarization

I of a solid in the stress field of a shock wave. The numerical results indicate

that energies of the order AE - 105 Joule can possibly be generated per pulse.

This type of power generator does not require an external magnetic field and

appears to be promising as a pulsed power source for special applications

(for which the efficiency of transformation of chemical energy of explosives

into stress waves and electrical energy is of no concern).

Experiments should be carried through to verify the theoretical expec-

tations. In comparing experimental and theoretical current pulse forms, it

should be noted that the temporal current distribution depends noticeably on

the shape of the stress wave. Current pulse forms for other stress wave shapes

than the simple step wave can be calculated in complete analogy. It might also

be of interest to refine the theory by including multi-dimensional effects and

deformation of the solid.

5
I

I

I
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INITIAL-BOUNDARY-VALUE PROBLEM FOR DIFFUSION OF MAGNETIC FIELDS INTO CONDUCTORS

WITH EXTERNAL ELECTROMAGNETIC TRANSIENTS

H.E. Wilhelm

Michelson Laboratory, Naval Weapons Center, China Lake CA 93555

ABSTRACT

The initial-boundary-value problem for the diffusion of an in-

itially homogeneous magnetic field into a slab of conductivity a < -

and width Ax - 2a is solved, under consideration of the electromagne-

tic wave pulses generated at the surfaces of the conductor by its

interaction with the external magnetic field, which propagate into

the surrounding vacuum. The analytical solutions show that (i) the

external electromagnetic transients are necessary in order to correc-

tly satisfy the boundary conditions for the tangential electric and

magnetic field components, and (ii) the spatial and temporal develop-

Iment of the electromagnetic field and electric current in the conduc-
tor is quantitatively determined by a new dimensionless parameter group

R u0 aac [c 0 ( o 0 )-/21. This "magnetic Reynolds number of the va-

cuum" determines the coupling between the transient fields in the con-

ductor a > 0 and the ambient space (a = 0).

"7
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INTRODUCTION

The diffusion of electromagnetic fields B(rt), E( ,t) in a conductor of finite

conductivity a and normal surface vector n(t), when the electromagnetic field 1 0

and 10 (*,t) outside of the conductor are known, is in general described by Maxwell's

equations without displacement current, where the tangential field components are

assumed to satisfy the boundary conditions1'2 ) U KI[B<,t) -0 o(,t)] 6 and x

[1(6,t) - 0 ( ,t)] . If the external electromagnetic field is time-independent

1 444and electric potential fields are absent, then Bo - Bo () and E 0 (since V o E

4. 1,2)
-aB /8t - 0 and Eo a -Vo0 5 0), so that the tangential boundary conditions reduce to

0 0

n x [B(,t) - Io(')] - 6 and ' x E(,t) - . These boundary conditions have found wide-

spread use in mathematical physics ), elecrromagnE ic theory2 , and the theory of mag-

netic flux compression (at the outside surface of the liners)3 '4). However, these

boundary conditions are questionable approximations, since they do not take into con-

sideration the wave fields B(r,t), E(r,t) propagating away from the conductor into the

surrounding medium, which have their sources in the transient current fields 0

V x B of the conductor.

For a concrete illustration of the problematics, consider the diffusion of an

external (homogeneous) magnetic field, B ,0 } for jxj > a, into a conducting

slab in the region lxi < a which is field free at time t - 0 (Fig. 1). Using the con-

ventional boundary conditions, the transient magnetic field B(x,t) - {O,B(x,t),O} in

the conductor is determined by the parabolic initial-boundary- value problem:
5 )

Wa/at - Ka2B/3x 2  , x < a , t > 0 , (1)

B(x,t-0) - 0 l jxi < a , (2)

I B(xnta,t) -B , t > 0 , (3)

where K - l/V 0o. By means of Fourier's method, the general solution of Eqs. (1) - (3)

is obtained as a superposition of eigenfunctions

n-1 2 2 t/4a2
B(x,t)D~ -I ~L.. -c2-)wt cow - 7x], lxi < a, t > , (4)0t V o[ - 1 (2n-l)

J l ' . .. . '= I III I • ' 5 8
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FIG. 1: Magnetic Field B (x) for t - 0.
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I
with B(x,t) B in x I < a for t . Since V x B u 0 aE, the electric field

E(xt) - {O,O,E(x,t)} in the conductor is

t) 2B 0 w n-i -K(2n-1) 2 2t/4a 2n-1

E(x, I (--I) en2a x , jxi a, t>O. (5)

In accordance with the boundary conditions (3), the space outside of the conduc-

tor remains unperturbed while the electromagnetic field diffuses into the conductor,

B (x,t) - B , E (x,t) = 0 , x a , t '0 (6)

The transient currents i - V x B/P° in the conductor are "eddy currents," and,

therefore, cannot produce transient magnetic fields B (x,t) - B (x,t) - B 0 0

in the outside region lxi > a. The net current I(t) through any cross section

z - constant vanishes, due to the boundary conditions (3):

B

I(t)/6y - l a [DB(x,t)/Dxdx - u1 1 0 dB - 0 (7)
-a 

B

By comparing the conductor solutions (4) and (5) with the vacuum solutions (6),

it is seen that B(x - ±at) - B M 0, but E(x - ±a,t) - E (x = ±a,t) = E(x - ±a,t) 0 0!
00

Thus, the conventional boundary conditions '2) lead to a violation of the fundamental

law of the continuity of the tangential electric fields at interfaces.

The correct formulation of the boundary conditions requires consideration of

the simultaneous wave fields B+(x,t), E+(x,t) propagating with the speed of light c

into the positive and negative half-spaces x > +a and x < -a surrounding the

conductor (Fig. 2), which are excited by the transient current fields J(x,t) -

U- 1B(x,t)/ax in the (space-charge free) conductor. No matter how small the external
0

transients B±(x,t) and E±(x,t) are (in comparison with B° 0 0 and E° - 0), they have

to be taken into account in order to rigorously satisfy the boundary conditions

n x [g] - 6 and ' x [E = for the continuity of the tangential electromagnetic

fields at conductor interfaces.

60-I
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I
The quantitative assessment of the significance of the external transients of

the diffusion process leads to the discovery of a new dimensionless parameter combi-

nation, which has the physical meaning of a "magnetic Reynolds number of the vacuum":

R oaC , c= ( c o)E /2 ) 3 x 108 m/sec (8)

In the following, the formulation of the initial-boundary-value problem for

diffusion processes with external transients and its analytical solutions for the

transient electromagnetic fields inside and outside the conductor are presented. The

qualitative and quantitative importance of the new boundary conditions and the

external wave fields are discussed in terms of R.

The presented theory has important implications for the evaluation of the flux
3,4)

losses through the liners of magnetic field compressors', the electromagnetic

acceleration of conducting macroparticles6'7 ) the electromagnetic induction in

8,9)
conductors moving relative to external magnetic fields and for the interaction

of transient plasma shock waves with external magnetic fieldsI0'I I). The general

significance for theoretical physics is obvious.

I

!
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INITIAL-BOUNDARY-VALUE PROBLEM

Subject of the consideration is the diffusion of the magnetic field into a con-

ducting slab IxI < a, which is initially embedded in a homogeneous magnetic field

B4° = {O,B ,0,1, under simultaneous emission of electromagnetic waves from the conduc-
0 09

tor surfaces x - ±a (Fig. 1).

The transient electromagnetic fields 1+ = {O,B±(x,t),O and I+ - {o,0,E (x,t)}

in the infinite vacuum half-spaces (a = 0, )  x > +a and x < -a are determined

' by the initial-boundary-value problems (±) for the wave equation,

2 2 .2 2 2a B fat C 3 B/ax, ±x > a, t > 0, (9)

B+(x,t 0) B , ±x > a , (10)

B+(x - ±a,t) - B + *+(t) , t > 0, (11)
0

since

aE+/t - c2aB+/ax , aE+/ax= aB+/at (12)I±±
by Maxwell's equations with displacement current. The solutions of Eqs. (9) - (11)

for the still undetermined boundary values *+ (t) are:

SB(xt) - B + *±(t+ ) , a < ±x < a + cto; C (13)

SB , a + ct < ±x <

and

E+(x,t) -+c* (t + ) , a < ±x < a + ct ,

=0 , a + ct < ±x <

tI These solutions are typical for hyperbolic equations, i.e., the boundary values 0 ()

I are "transported" into the half-spaces ±x > a with the speed of light c, so that dis-

continuous wave fronts result at x - ±(a + ct).

62
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I

Let the external magnetic field B be switched on at t = 0 so that no electro-
Let 0

magnetic fields exist in the conductor for t < 0 The conductor has a finite con-

ductivity a and can, therefore, not carry surface current densities,)T* 0 0

for G < and E bounded. Accordingly, the boundary conditions for the tangential electric

and magnetic field components at the conductor vacuum interfaces are

B(x - ±a,t) - B 0+ *+(t) , t > , (15)

E(x = ±a,t) = c*+(t) 9 t > 0 , (16)

where

E(x,t) - KaB(x,t)/Bx , Ixi < a , t > 0 , (17)

by Ohm's law is the electric field in the conductor, and B(x,t) is the magnetic field

in Ixi < a. Furthermore

K l0 a > 0 (18)

(The boundary conditions n. [eE] - 0 and n. [B] 6 are satisfied sincel and I have no

normal components.) By elimination of the unknown boundary values E(x - ±a,t) and *+(t)

from Eqs. (15) - (17), boundary conditions involving only the magnetic field B(x,t) in

the conductor are obtained:

8B(x=-±a,t) B(x -+±a,t) B , t > 0 . (19)ax K K 0

These are the new boundary conditions for the diffusion of magnetic fields B(xt) into

conductors. They differ from the conventional boundary conditions 1 , 2 ) through the curl

terms aB(x - ±a,t)/3x 0 0, which consider the emission of magnetic dilution waves from

i the conductor surfaces x - ±a into the vacuum IxI > a.

Within the conducting slab of finite width 2a, the propagation of the magnetic

field can be treated in the nonrelativistic or diffusion approximation' . Accor-

S dingly, B(x,t) in the initially field free conductor is determined by the parabolic

initial-boundary-value problem:5 63
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2 2
aB/Bt - 0 B/ax , xj < a t > 0 , (20)

B(x,t - 0) = , jxj < a , (21)

DB(x = ±a,t)/ax + hB(x=+a,t) = ±hB , t > 0 9 (22)

where

h - cIK > 0 (23)

The transformation,

B(x,t) -B0 + t(x,t) , xj a , t 0 , (24)

reduces Eqs. (21) - (22) to an initial-boundary-value problem with standard "radiation"

boundary conditions:

2- 2aB/at - Ica B/ax , 1xI < a , t > 0 , (25)

x(x,t - 0) = -B°  Jx < a , (26)

ab(x - ±a,t)/ax ± h (x=±a,t) - 0 (27)

In accordance with Fourier's theorem, the solution of Eqs. (25) - (27) is obtained
as a superposition of eigen-functions b (x,t) for the region lxj < a which satisfy the

n

j" boundary conditions (27):

0(h 2+k 2)k sink a -ick2t
i~~)- -2B 0  - 2 2 n cosknx 1x <a t > 0 , (28)j B(x,t) =2 o 1[h ah

where 
n

kna tg(k a) - ha , n - 1,2,3,..., (29)

gives the eigenvalues k nassociated with the boundary conditions (27).

1. Conductor Solutions:

For a compact representation of the field solutions, dimensionless independent

(E,T) and dependent variables are introduced,
64
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I
x/aa 2  a nt= k na (30)= xa , T = t/ ' n n

B(E,,) f= B(x,t)/B o, E(C,T) = E(x,t)/(B 0/a), j(E,T) = j(x,t)/(B0 /o a).

(31)

According to Eqs. (24) and (28), the solutions for the dimensionless fields B(E,T),

E((,T) (,)/ , and j(E,T) in the conductor are given by:

(R2+ 2)nl sina 2

nQl [( 21 2)+1 ]  e coSa E E i , >• 0 , (32)
n-i [(R+a 2)+R]

-o (jZ2 2 si n  -a2

E(6,T) - 2 2 e sinan , j i < 1 , > 0 , (33)
n-1 (R + n)+R]

(E,T) - E(Q,T) , j~j <1 , T > 0 , (34)

where

Cn tga n = , n 1,2,3,..., R - achc -o -ac (35)

-2
by Eqs. (8) and (29). For sufficiently large times T >> a1 , the homogeneous magnetic

field has diffused completely into the conductor,

B(,T) - 1 , E(,T) - 0 , j( ,r) 0 , T -* . (36)

In the hypothetical limit of infinite magnetic vacuum Reynolds number R, Eq. (32) re-

duces to the known solution (4) for the conventional boundary conditions5)

- n-1  22
liB(,' 1 - l .--- -(2n-l) 7 T/4 2n-3.liMB(&,n) 2n-1) e cos 2 - WE, I I < 1, T > 0,

4. since
lim a - - , n - 1,2,3,... (38)

n 2 '

3 Comparison of Eq. (32) with Eq. (37) indicates that the 8 (,T) solutions

i with the new and conventional boundary conditions differ not much if R >> O1 = /2.
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2. Vacuum Solutions:

In view of the boundary conditions (15), Eq. (32) yields for the boundary

values T+(T) = B( =±l,T) - 1. Accordingly, Eqs. (13) and (14) give for the electro-

magnetic fields in the positive ( > +1) and negative ( < -1) half-spaces the so-

lutions:

B,(&,T) = 1 + '+(_ ) , 1 <±C < 1 + RT , (39)

-I , l+RT < ±E <

and

E+(C,T) T-RV(T T- 2i) , < ± < 1 + RT , (40)

-0 ,=0 1 1+ R-T < ±E < o ,

where R +a= (R2+.n)sinn Cosan eaLn [T(-7-)/R]
'+(-T -. ..) - -2 1 (41)

R n=l anR2[C+a 2 )+R]

n n

Eqs. (39) and (40) represent electromagnetic wave pulses which propagate with the

dimensionless sreed R(c) from the conductor surfaces & - ±1 into the vacuum spaces

± E > 1 with discontinuous wave fronts at - ±(l + RT). They are kicked on at T = 0

and their emission lasts to the end (T - y) of the diffusion process in the conductor.

The vacuum fields B+(E,T) are in opposite direction of Bo, i.e., they represent di-

lution waves (Fig. 2).

In the case of large coupling numbers, R >> 1, Eqs. (39) and (40) yield with

S Eq. (41)
B±(&,r) a 1 + O[R- 1  

, 1 < ±C < 1 + RT , T > 0, R >> 1, (42)

± (~2n-l 2
t + ~ ~ ,(3

E~(~,t2 )±2 TE + ( ,T) *±_2 e , I< +& < 1 + RTr , T > 0, R >> 1, (43)

- n-l

since cos n  (-l)n-l (2n-l)w/2R for R >>a by Eq. (35).
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The magnetic field B outside of the conductor remains nearly unperturbed
o1during the diffusion process, B R-  whereas the external electric transients

+

E, # 0 are of order R 0 behind the wave fronts, r = ±(1+RT), for R >> 1. However,
VB -E/t, ±~ 0 R-I

since VxB+ = c DE4 /3t, not only E+ - R but also R cannot be neglected for

R >> 1.

Thus, we have shown how self-consistent solutions can be obtained for the

electric and magnetic fields in the conductor and the surrounding vacuum, which

satisfy the boundary conditions for the continuity of the tangential electric and

magnetic fields at the conductor-vacuum interfaces. The conventional boundary

conditions for electromagnetic diffusion processes1'2 ), ignore the external elec-

tromagnetic transients, violate the boundary condition for the tangential electric

field, and permit no Poynting vector S = ExH outside of the conductor. As a result,
the conventional boundary conditions 1,2) make it impossible for electromagnetic

fields to diffuse through cond,--L "- and to escape into the ambient space.

For both the conductor a -.. !m solutions, the limit R - 0, which implies

a - 0 since a # 0, is not realizable since the conductivity of conductors is by

definition large. For insulators or extremely poor conductors (R a - 0), the

nonrelativistic or parabolic diffusion equation is inapplicable12 ). Therefore,

the investigation of the limit R - 0 would require solution of Maxwell's equations

with displacement current in the slab 1xi < a given elsewhere13 )

The generalization of the theory required for conductors and external media

ji (vacuum, gases, fluids) with different permittivities e and . are trivial but

complicate the notation.

I
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DISCUSSION

It is known that Maxwell's equations with displacement current and the non-

relativistic Ohm's law j = GE combine to a hyperbolic diffusion equation for the

magnetic field B(,t) in conductors12 )

3 2  
-+ LRLlt= c2V2 (44)

at 2 TR3
where

R 0Ia (45)

- -9 7 -19 scfrcpe
is the field relaxation time, e.g., TR = (10 /36w)/6x10 - 10-sec for copper

with a = 6x07 I /m. Eq. (44) reduces to the parabolic diffusion equation in the

limit TR << 1:

«B 1c1 r << 1 (46)

The parabolic diffusion equation is an excellent approximation, since the relaxa-

tion time of conductors is extremely small, T R  << 1. By Eqs. (45) and (46), the

field relaxation time TR and the diffusion time T D are interrelated by

-1 2 /a22 (47)
D R D o

where a is the extension of the conductor. For conductors, the diffusion time is

relatively large if a is not microscopically small, e.g., TD 4rxlO- 76x1 x10- 4

10- 2sec for a copper slab of width a - 10-2m.

Comparison of the neglected term a B/at with the second and third terms of

Eq. (44) reveals the relation of the parabolic diffusion approximation to the new

coupling number R p 0 aac:

3 6b



- 2 + tR o o R -2
S2  T RIa -I 2 B oa)2
at at D G0 a

I This result again confirms the validity of the parabolic diffusion equation for

conductors, for which R = aac >> 1. E.g., R - 47rxlO- 76xlO7x10-2 3xlO
8 - 108

for a copper slab a =10 m. More important, Eq. (48) demonstrates that the

2-+ 2 -2neglected relativistic term a B/at in the conductor is small of order R-<<<< 1,

whereas the calculated electromagnetic fields in the conductor are of order

B - E - R0 [Eqs. (32) - (33)], and the external electromagnetic transients are

of order 5+ R- 1 and E+-R 0 [Eqs. (39) (40)], since in Eq. (41) for large R

1cosa - [1 +(R/an )21-1/2 a an/R 2n 2 , R > nr V n - 1,2,3.

(49)

In conclusion, it is noted that, in conductors, magnetic field diffusion is

a nonrelativistic process (as is electric conduction, J oE). The electric tran-

sients E+ in vacuum must be of the same order as the electric field E in the con-

ductors, E+ - E - R0 , since otherwise the tangential electric field could not be

continuous across the conductor-vacuum interface. On the other hand, the external

magnetic transients B+ are small of order Rc (o a)-c since the magnetic

field energy flows with the speed of light towards the conducting cavity. The

Ideeper physical reason for these electromagnetic transients is to be seen in the

conservation laws for electromagnetic energy and momentum, which follow from Max-

'. 12)well's equations

I
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INITIAL-BOUNDARY-VALUE PROBLEM FOR ELECTROMAGNETIC INDUCTION IN ACCELERATED CONDUCTORS

MOVING ACROSS MAGNETIC FIELDS

H. E. Wilhelm
Michelson Laboratory
Naval Weapons Center

China Lake, California 93555

Abstract

Boundary conditions are derived for the interfaces of a conductor moving across

an external magnetic field in an ambient medium (vacuum or non-conductor), which

consider the emission of electromagnetic waves from the conductor surface as a

result of electromagnetic induction. These boundary conditions are applied to

the initial-boundary-value problem for the electromagnetic induction in a con-

ducting slab, which is accelerated across a homogeneous magnetic field to a non-

relativistic velocity. Fourier series solutions are presented for the transient

electromagnetic fields in the moving conductor and the discontinuous electromag-

netic waves in the ambient space. It is shown that the transient electromagnetic

fields inside and outside the conductor are due to two mechanisms, i.e., "velocity

induction" (ordinary induction) and "acceleration induction" (dv(t)/dtAO).

I
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INTRODUCTION

Although the theoretical foundations for electromagnetic induction in con-

1)ductors moving across magnetic fields were formulated in 1908 by H. Minkowski

only simple problems such as stationary unipolar induction in rotating discs

have been discussed. 2 ) The electrodynmics of moving media has been a subject

of basic research and also controversy to date.3 ) In the treatment of electro-

magnetic induction, e.g., in liners of magnetic field compressors 4'5) and tran-

sient plasma shock waves interacting with external magnetic fields Bo'0 it

has become customary to use the boundary condition for the tangential magnetic

field in the form nx( - o I 4 at the conductor-gas interface, where B is
0

the transient magnetic field in the conductor and B is the unperturbed ()0

external magnetic field. This boundary condition leads to electromagnetic

solutions B,E in the conductor which do not satisfy the corresponding bound-

ary condition tizE - Eo - for the tangential electric fields at the mov-

ing interface. These "conventional" boundary conditions produce approximate

to incorrect results, depending on the physical situation.

For an illustration of the problematics of the conventional boundary

conditions,4'5) which are also being used in the analysis of magnetic field

8)[diffusion into conductors at rest , consider a conducting slab Ax - 2a with

its surfaces initially at x - ±a in a transverse homogeneous magnetic field

1 [ - {,B ,O for lxi <" (Fig. 1). At time t - 0, this conductor is set

into motion with a velocity v(t) - {d*(t)/dt,O,O} so that its front and rear

*surfaces are at x - x(t) ± a at time t > 0 where 9(t-O) - 0. No matter whether

the induction of the transient magnetic field i(x,t) in the moving conductor

* 72
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B . '..* I". :
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o Xt- t) " . (t)+

x(t)

FIG. 1: Geometry of fields B, v, E, and location 1(t) of conductor for t > 0.

.o%

X)-8 - !+(x.t)

.- S Bx t)

FIG. 2: Qualitative representation of induced field B(x,t) in moving conductor

* and external electromagnetic waves ±(x,t) with fronts at x - t(a + ct).

I
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9)
is described by the relativistic wave equation or the non-relativistic dif-

9)fusion equation the initial condition B(x,tfO) ffi Bo -a < x < +a, and the

conventional boundary conditions B(x=*(t)±a,t) = , t > 0, permit only one

and the same solution, 0(x,t) B which impliBJ E(xt) - -(t)xAo, and

r(x,t) - by Ohm's law for the moving conductor. These simple solutions are

due to the conventional boundary conditions without external perturbations and

are :bviously not correct, since the boundary condition for the tangential elec-

tric field is not satisfied, nx[f - Eo] = v(t)B 0e where Jo= . Since M.

Faraday it is an experimental fact that transient electromagnetic fields and

currents are induced in the conducting slab as soon as it is moved relative to
-4.

the external magnetic field Bo .

IIn the following, an analytical solution is presented for the initial-

Iboundary-value problem of the electromagnetic induction in a conducting slab
Ax = 2a, which is at rest for t < 0 in a transverse, homogeneous magnetic

field Bo , and which is set in motion at t - 0 with a nonrelativistic velocity

v(t) of arbitrary (finite) acceleration dv(t)/dt (Figs. 1,2). The electro-

Imagnetic induction in the conductor is shown to produce transient electro-
g magnetic fields within the conductor and electromagnetic waves at the moving

conductor surfaces x - R(t) ± a, which propagate with the speed of light in

the surrounding space to infinity. Only if the electromagnetic waves outside

of the moving conductor are taken into consideration, consistent solutions of

* Maxwell's equations exist which satisfy the boundary conditions for the tan-

I I gential and normal electromagnetic fields at the conductor-non-conductor

interfaces.

* The analytical solutions for the moving conductor and surrounding spaces

permit significant conclusions. The transient electric field induced in the

1 74
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I
conductor is the sum of a field which is proportional to the velocity V(t)

and a field which is an integral functional of the acceleration dv(t)/dt

of the conductor. A fundamental dimensionless group (a -conductivity, .1-

permeability of conductor)

R = ulaac, c - (U2F2)-I/2

is found which represents a "magnetic Reynolds number" of (i) "free space"

(if the conductor moves in vacuum or gas with permeabilities e , Vo,), or (ii)

"non-conducting space" (if the conductor moves in a nonconducting medium with

permeabilities £2 2 ). R determines the coupling of the transient electromagnetic

fields inside and outside the conductor. The external magnetic transients

would be negligible for R - =, however, the external electric transients do

not vanish for R + =. Thus, the conventional boundary conditions which assume

that the external magnetic field B remains unperturbed outside of the conductor

jwhile transient electromagnetic processes occur in the latter are not correct
within electromagnetic theory.

[
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1 BOUNDARY CONDITIONS

f For the analysis of electromagnetic induction in moving conductors (conducti-

vity a < -, permittivities el which move with a velocity field ( ,t) relative

Ito the "laboratory system" in a non-conducting medium (vacuum, gas, or fluid; a - 0,

E29U2) , the boundary conditions for the electromagnetic fields 1' 1 1 (conductor)

and 2' 12 (non-conductor) are required in the L-frame. Integration of Maxwell's

equations with displacement current 10) over the interface 1-2 with velocity *( ,t)

and normal vector n(r,t) (direction 1 - 2) yields for the tangential and normal elec-

tromagnetic field components the boundary conditions in the L-system:

nx 2  1 = +(n' )"[ 2 - 9 (1)

nx[D2/P2 - D 111/ 1 - - \n.v)[e 2 2 - 1 l1 , (2)

n-2122- ell] - , (3)

" 1 2 - 111 , (4)

where

p , p = lim pAs (5)
. As+0

IIi

I l are the surface current and charge densities of the interface As 0. A conductive

surface current density does not exist at a conductor of finite conductivity, -

lir a As - 5 for a < - and I bounded.

II In many cases, the permittivities of good conductors and their ambient atmos-

pheres equal the free space values, e 1,2- and p1,2 u." With this simplification

In notation, the boundary conditions (1) - (4) are applied to the front (+) and rear

(-) surfaces x - £(t) + a of a conducting slab (a < -) with the fields (Fig. 1)
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B {OB(x,t),o , E {O,0,E(xt)} i i(t) - a < x < x(t)+aI

4. 4. 4

B(x,t=0) = B E(x,t=0) - 0 -a < x < +a, , (6)
0

which moves with the velocity t(t) {dx(t)/dt,0,0) in an ambient medium (o 0) with

the fields (Fig. 1)

4. 4
± {O,B+(x,t),o , + {0,o,E+(x,t), x x(t) a

(x,t-o) B1o X ,t - o) , x Z ±a . (7)

Bois an external homogeneous magnetic field which fills uniformly the conductor (1)
0

and the medium (2). The boundary conditions (3) and (4) are satisfied identically

-). 4.4). 4.*
since B,E and B+,E+ are In so that J = and p - 0 by Eq. (5). The tangential

boundary conditions (1) and (2) yield for the fields (6) - (7):

K_ (x-i(t)±a,t) - E()x-i(t)±a,t) - Tv(t)[B+(x 4x(t)±a,t) - B(x-i(t)±a,t)],

(8)

B+ (x-x(t)±a,t) - B(x-!(t)±a,t) - jv(t)c-2 [E+(x-i:(t)±a,t) - E(x-(t)±a,t)],

(9)
where

c- (1)-/2 (10)

is the speed of light. For non-relativistic conductor motions, Eqs. (8) - (9) reduce

to:

E+(x-i(t)±a,t) - E(x-i(t)±a,t) - 0 , v(t) 2 < c 2  (11)

±B+(x-i(t)±a,t) - B(x-=(t)±a,t) - 0 , v(t)<< 2 (12)

According to the non-relativistic Ohm's law for conductors which are moving with

a velocity v relative to the L-system, - a( + vx the electric field t(xt) in

the conductor is expressed in terms of I(x,t),

77,
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-12 2
E -vB + (a) x , (t) - a < x< x(t) + a , v(t) << c (13)

The electromagnetic field _(x,t), t+_(x,t) in the adjacent semi-infinite half spaces

is determined by the hyperbolic initial-boundary-value problems:

12 2 2 2 2
a B+/3t c B+/3x , x i i(t) ± a , t > 0 , (14)

B±(x,t0) , x > a (15)

B+(x-i(t)±a,t) B(x-4(t)±a,t), t > 0 , (16)

since

aE l/x B ±1t , l/x - c-2 3E 3t (17)

by Maxwell's equations for homogeneous non-conductors. Eq. (16) couples the solu-

tions B+(x,t) in the semi-infinite spaces x > x(t) ± a to the solution B(x,t) in the

conductor, i(t) - a < x < i(t) + a. By Eqs. (14) - (17), the ambient electromagnetic

field transients are of the form:

B(+ (,(t .. -)) , x(t) + a x S ± (a + ct)
± (0

SB a + ct < ±x< , (18)

and

E± (x,t) - TcT±(t x-- -- x(t) ± a S x 5±(a + ct) ,

c

S, a + ct < ±x< , (19)

where

1+(t ' ) =B(x-i(t)±a,t) -B °  (20)

- by Eq. (16) determines the form of the wave functions V (TI) of the "self similar"

arguments rl± t T x/c + a/c from the conductor solution B(x,t).

The solutions (18) - (19) are typical for hyperbolic initial-boundary-value

I problems, i.e., the boundary values T±(t ; i(t)/c) are transported with the speed of
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light c into the half spaces x- i(t) - a, so that discontinuous wave fronts result

at x ± -(a + ct).

By means of Eqs. (18) - (20), the boundary-values B+ (xffi(t)±a,t), E+(icr(t)+a,t),

and Y+ (t ; i(t)/c) are eliminated from the boundary conditions (11) and (12):

5B(x'&(t)±a't) + Cc.; v(t)]B(xfi(t)±a,t) = -cB v(t)2 << c2  (21)
POJGx

This are the fundamental new boundary conditions for moving conductors which (i) in-

volve only boundary values of the magnetic field B(x,t) of the conductor, and (ii)

consider the emission of electromagnetic waves,

+(x,t) - '+(t ; x ) , t+(x,t) - ;cF(t ; --+-- (22)

from the conductor surfaces x - (t) ± a into the ambient spaces x O x(t) ± a.

Since the magnetic field in the conductor is the sum of the external B and a tran-
0

sient B(x,t),

B(x,t) - B + B(x,t) , x(t) - a < x < i(t) + a , (23)o

Eq. (21) gives for the transient conductor field the boundary conditions:

I3A(x-ic(t)±a,t) + 2 2
11aax - [c ; v(t)]B(x

4 (t)±a,t) v(t)Bo, v(t) << c (24)

In view of the difficulties to accelerate macroscopic bodies to speeds JI v> 10 4m sec,

the stronger non-relativistic condition lvi << c is in general fulfilled, which redu-

ces Eqs. (21) and (24) to the simpler boundary conditions:

(0o)0 a(x'i(t)-a.t) ± c[B(x-i(t)±a,t) - B0  = v(t)B0  jv(t)j << c

(25)
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and

(,,)-1 A(x 4x(t)±at) - ct(x 4 (t)±a,t) v(t)B , lv(t)l << c (26)

If the Vx and v(t)B terms are omitted, Eqs. (25) and (26) reduce to the con-

ventional boundary conditions4 - 7) B(x--x(t)+a,t) - B and B(x4 (t)±a,t) = 0, respec-

tively. Comparison shows that the conductor currents VxB/I and the induced currents

av(t)B at the conductor surface are the sources of the emitted electromagnetic

transients.

!80
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I
j INITIAL-BOUNDARY-VALUE PROBLEM

Consider a rigid conducting slab of width Ax = 2a with surfaces in the planes

x = x(t) ± a at time t > 0 (Fig. 1). This conductor is exposed to an external mag-

netic field 10 = (O,B ,} which is homogeneous throughout the space - < x < +-, and

is accelerated to a (non-relativistic) velocity v(t) = {v(t),O,O} from an initial po-

sition at rest i(t=O) = 0 so that

t
v(t) - di(t)/dt , i(t) f v(t')dt' , dv(t)/dt Z 0 , (27)

0
with

i(tuO) = 0 , v(t=O) - 0 , dv(t=O)/dt > 0 (28)

The electromagnetic induction of the transient electromagnetic fields [ =O,B(x,t),O},

{O,O,E(x,t)} in the conductor of finite width, as a result of its accelerated mo-

tion v(t) across the external magnetic field o' is determined by the parabolic ini-

tial-boundary-value problem for B(x,t):

2B
3B + , 9 2)B a < x < i't) + a , t > 0 , (29)

ax ax2

B(x,t-O) - B -a < x< +a , (30)

DB (x-i (t)i±a, t) + h[B(x-;:(t)±a,t) - Bo K -1 vt)Bo Vt > 0 (31)
ax 0"

S where

ic i/jio , h - c/c . (32)

Eqs. (29) follows from Maxwell's equations and Ohm's law j a o(E + vxB) for moving con-

i ductors in the diffusion approximation?) TD 0 C/a - 0. The boundary conditions (31)

couple the electromagnetic induction process in the conductor to the external transi-

ents in the ambient medium [Eq. (25)]. The transformation,

B(x,t) iB ° +i(X,t) , -a < 4+a , t 0 , (33)
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x x - 3C(t) , t> 0 , (34)

reduces Eqs. (29) - (31) to the initial-boundary-value problem:

aB/at - Ica2BIaX 2  , -a < x < +a , t > 0 , (35)

B(X,t=) = 0 , -a < X < +a , (36)

(B(xc-at)/ x ± hB(x-a,t) = K1 v(t)B , t > 0 , (37)

I The linear IBVP (35) - (37) is decomposed into a BVP and an IBVP by means of the

ansatz:

B(x,t) - F(x,t) + G(x,t) , -a < x < +a , t > 0 , (38)

where

a2F/ax 0 , -a < x < +a , t , (39)

3F(xfa,t)/ax - hF(x-±a,t) = K-Iv(t)B 0 t > 0 , (40)I and
aG/Dt - KD2 G/x - F/3t , -a < x < +a , t > 0 , (41)

G(x,tsO) - -F(x,t=0) , -a < x < +a , (42)

I aG(x.±a,t)/ax ± hG(x-±a,t) - , t > 0 . (43)

I The solution F(x,t) of Eqs. (29) - (30), the source 3F(x,t)/at in Eq. (41), and the

I initial value F(x,t-0) in Eq. (42) are:

F(x,t) - [v(t)B /2(K + ac)]x , -a < x < +a , t > 0 , (44)

ZF(x,t)/t _dv(t) o/2(c + ac)]x -a < x < +a t > 0 (45)

.
and

F(x,t-0) - 0 , -a x +a (46)
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since v(t-O) - 0. With aF(x,t)/Bt odd in x and F(xt=O) = 0, the initial-boundary-va-

lue problem (41) - (43) is solved by means of the Fourier expansions:

G(x,t) = n (t)sin k n , -a < x < +a , t > 0 , (47)
n-i

n1
where

k na ctg k a = -ha , n M 1,2,3, ... , (49)

determines the eigen-values k of the eigen-functions sin k x associated with then n

boundary conditions (43). Substitution of Eqs. (47) - (48) into Eqs. (41) and (42)

yields by means of the inverse Fourier theorem

dG (t)/dt + k 2G M(t) - -Sn(t) , t > 0 , (50)a n n

Gn(t-0) - 0 , (51)
n

where

SnM - (a/K)t) B 0dv(t)/dt , t > 0 , (52)

K-(h 2+ k 2)sin k a/(k a) 2[(h 2 + k 2 + (h/a)I (53)

by Eqs. (45) and (48). The solution of Eqs. (50) and (51) is

t -Kk2 (t-t')
G (t)-- f e S (t')dt' , t > 0 (54)

0 n

J Combining of Eqs. (47), (52), and (54) yields as solution of the initial-boundary-va-

lue problem (41) - (43)

d ) - k (t-t')
G(x,t)- ! Knf t dvt' e d]sin kX, -a < X < +a, t > 0K n,0 dt'n

(55)

By Eqs. (33), (34), (38), (44), and (55), the magnetic field in the moving conductor

is
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B(x,t)= B + j,7 t)B/2(K+ac)](x_ ()) ABo KX dv (t e dn t-

a(r < a x< i(t) + a , t > 0 (56)

This is a fundamental result, which shows that the transient magnetic field B(x,t) is

the sum of a field F(x,t) induced by the motion v(t) and a field G(x,t) induced by the

acceleration dv(t)/dt of the conductor in the external magnetic field B0 . Similar de--

compositions exist for the electric field E(x,t) and current density j(x,t) in the ac-

f celerated conductor.

The still unknown forms () of the two external wave functions T+(t T x/c + a/c)

I in the spaces x ! i(t) ± a are determined from the solution (56) by means of the boun-

I dary condition (20), which gives

+(t B()) -a,t) t > 0 (57)

I The transformations t4 - t+(t) and its inverses t - f+{t+) for the two (±) waves defined

by

t+ t ;± t f+(t+l t > 0 , (58)

I where t+ , t- - 0 for t - 0 (i(t-O) -0) but t+ # t_ for t > 0, show that the wave func-

tions are of the form T+(t+)-B(X-±a,t - f+ {t +). Accordingly,

+(t - B(X-ta, t-f+{t x a (t) a 5 x 5 ±(a + Ct) t > O.

I -(59)

Since B(x,t) - B(x,t) - Bo, substitution of Eq. (56) into Eq. (59) gives the wave func-

tions T as functionals of f+{t x/c + a/c)

8

F
i -. , ._ : = = ( ; ... ,, ,

K j- _.



T+(t T- - +[aB/2(K + ac)2v(f+t a - )

Ic
-- K k nf+{t c dv(t') K

B. K O sin kae d' e dt

i(t) ± a 5x ±(a + ct) , t > 0 . (60)

The solutions (60) determine the propagation of the emitted electromagnetic waves

outside of the moving conductor, x ; i(t) ± a. Again, these waves consist each of a

"velocity" wave [v(t)] and an "acceleration" wave [dv(t)/dt]. They satisfy all boun-

dary and initial conditions,

-/x (t) a ti (x-at) 0 t , (61)

'i_ =/ 0 x ±a (62)±t-

since t+ 0 and x - ±a [Eq. (60)] for t 0 0, and, hence, f+ - f+(O) 0 [Eq. (58)]

and v(f+) - v(O) = 0.

For a brief illustration of the transformations (58) consider the simple con-

ductor motion v(t) - v0 , i(t) - v0t, t > 0. In this case, t_ = (I v o/C)t and

1 ( f+(t+) is proportional to t

I

II
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I
ANALYTICAL SOLUTIONS!

For the most general representation of the electromagnetic fields in the moving

conductor and the ambient medium, dimensionless independent and dependent variables

are introduced by

& x/a, T - ct/a 2 , t(T) - x(t)/a, a. - kna, v(T) - v(t)/v °  (63)

B(,T) = B(x,t)/Bo , E(,r) - E(x,t)/(icB /a), j(&,T) j(xt)/(Bo/ua),

Y 'y(x,t)/B 0  (64)

1. Conductor Solutions

According to Eq. (56), the dimensionless electromagnetic fields B(,'r), jQ,t)

- 8( ,T)/, and E(Q,T) in the accelerated conductor are:

B(ET) = i + 2( V(T)ft - Z(T))

-- *c T 
2 - n(T--T'

n=1  dr (

J(r) - 14 < t (T) + I T > 0 (65)

j(,T) -2(1 +M )

2 ,)

~dv(T') n

E(T)- 1 < (r) + 1 , T >0 , (66)

E(,T) '-U()(8,Qr) + j(,T), t(T) - 1 (T) + 1, T> 0 (67)

where
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pi

actga = - R, n 1,2,3, ... , (68)

+2)sna /2 (R 2 + a2) + RZ] , (69)

and

M gaav°  , (70)

R aac . (71)

I M is known as the magnetic Reynolds number of the conductor with characteristic speed

I -v o. Eqs. (65) - (67) indicate that M/(I + R) determines the order of the ratio /B°0

of induced and external magnetic fields. The steady-state induction in moving con-

I ductors 11,12) is determined only by M.

R is a new dimensionless group which involves the velocity of light c - ( )1/2

I so that R > M for v0 << c. R has the physical meaning of a "magnetic Reynolds num-

bez"of the ambient nonconducting space, i.e., R is a coupling parameter between the

conductor (0 < a < -) and its external medium (a = 0), which determines the magnitudes

of the external electromagnetic transients (Eqs. (75) - (76)].

The net electric current flowing through the conductor is per unit width An - 1

t(T)+l

1 I(T)- f j(E, )dC - Mv(t)/(i + R)

T -0 (T-r')

- i inaK fLv (rd dT' T > 0 . (72)

n-11i 0 d

I 2. External Solutions

3For the space surrounding the moving conductor, the wave functions 'V+(x,t) of
3 the electromagnetic transients are by Eqs. (60),(63) - (64) in dimensionless repre-

sentation8
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+2( + ) R

'+ ( rT- R' =-

2 _T - T

M sina K e R ( (l e ndT'nl n n dT'r
n- cI0

(r) ± 15 # +(1 + Rr) , >r 0, (73)

where

+T (c/a)f+{t (74)

By Eqs. (18) - (19), and (73) the dimensionless solutions for the electromagnetic field

outside the moving conductor are:

B+( ,r) 1+ c. - , ± + (T(l +R), (1 + 0

I =+1 , <+RT<+ , • 0 (75)

and

I E =(~,t) 0 , R < ±E ± , T 0 (76)

I

I
I

II
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DISCUSSION

The magnetic Reynolds number is M wav0  1 for conductors (depending on the

parameters a, a, and v ), whereas the coupling number R = uoac >> 1 is large for macro-

scopic (a) conductors. In the most general case, electromagnetic induction in a mo-

ving conductor is determined both by M and R, where M << R since v0 << c.

i. Case R >> 1. For most macroscopic conductors, it is a > 10 4- /m and a > 10-4 m

(p 4xlO Vsec/Am, c - 3xlO m/sec) so that R > 102, and by Eqs. (68) and (69)

a n &niT , R >> nff , n - 1,2,3, ... , (77)

K n (-l)n+l(nwi) -1 , R >> nr , n 1,2,3, ... , (78)

It is seen that the "velocity" and "acceleration" fields in Eqs. (65) - (67) are of the

same order since

M( + R) - M(+K) M/R v0/c << 1, R >> 1 (79)

In the magnetic field solution (65), the dominant term is the external S - 1 >> M/R,

and in the electric field solution (67) the dominant term is the motion induced field

MVBoj >> jj, if R >> 1. Although significant electric fields are induced in the con-

ductor, the induced magnetic field is small, - M/(1 + R) << B - 1 if R >> 1, and,o

I therefore, the current density j - aB/at is small, too.

2. Case R - ,. In an actual experiment, R - - can never be reached but only

II asymptotically approached. In this hypothetical situation, the conductor [Eqs. (65) -

(67)] and external (Eqs. (75) - (76)] solutions reduce to:

B(E,.r) - 1 , j(,r) 0, E(E,-t) - -v(T), t('r) - 1 ' ^ € (T) + 1, r ;, 0,

5 [(80)
and

I B(,r) 1 + O[M -1], E+(&,'r) - AR 0  0 , t(r) - 1 ±( l % +(+RT) , > ) 0 , (81)
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since

lima i r , lim K 0 , lim RK = (-1) n+l m, n = 1,2,3,.... (82

It should be noted that for R-. -, only k - 0 but E+ 0 0, i.e., the external

electric transients are (behind their wave fronts) of the same order of magnitu-

- 2 -2 /t h lcde as the electric field E in the conductor . Since 7x-B_. c-2 fat, the elec-

i tric transients E+ always coexist with (no matter how small) magnetic transients

B+. For this reason, the limit R = has no physical meaning, quite apart from

the fact that always R < - for o,a,c < -. The conventional boundary conditions
4'5'8 )

for electromagnetic diffusion processes in conductors imply R- and E± = 0, and

I are, therefore, physically incorrect.

As an explanation it is noted that, in conductors, magnetic field diffusion

is a nonrelativistic process, as is electric conduction, a(E + vxB). The elec-

tric transients E± in vacuum must be of the same order as the electric field E in the

conductors, E± - E - MR0 , since otherwise the tangential electric field would not be

i continuous across the conductor surface. On the other hand, the external magnetic

transients 8+ are small of order MR-1 = M(O aa)- c-i since the magnetic field energy

flows with the speed of light in the ambient space. The deeper physical reason for

the external electromagnetic transients is to be seen in the conservation laws for

9)
electromagnetic energy and momentum, which follow from Maxwell's equations

1 3. Diffusion Approximation. It is known that Maxwell's equations with dis-

placement current and the nonrelativistic Ohm's law,j- O(E + vxB), combine to a

hyperbolic diffusion equation for the magnetic field B in conductors9 , which reads* 4
in the considered one-dimensional case with r-independent conductor velocity v(t)

I32B 1DB + _L 3 2 a2.B

2 a = c - (83)

I
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I
where

TR = o/ << 1 (84)

is the field relaxation time, which is extremely small for conductors. Eq. (83)

reduces to the parabolic diffusion equation in the limit TR << 1:

3B + B 2 B
+t la T - TR < 1 (85)

Xx2  R

The parabolic diffusion equation is an excellent approximation, since the relaxa-

tion time of conductors is very small, T R << 1. By Eqs. (84) and (85), the field

relaxation time -R and the diffusion time TD are interrelated by

-1  22 2 (86)D , D oa ,0

where a is the extension of the conductor. For conductors, the diffusion time is

relatively large if a is not too small, i.e., TD >> R'

Comparison of the neglected term 2B/Dt2 with the leading (0 4 Ivi << c)

second and fourth terms of Eq. (83) reveals the relation of the parabolic diffusion

approximation to the new coupling number R - po ac:

1I B IIl1 9B 2 Bic 32 BI tpR -2
a tl 2 c 2 _TD - '-- - R . (87)

at at ax D  (Va) 2

This result again confirms the validity of the parabolic diffusion eauation for

I conductors, for which R - %oac >> 1. More important, Eq. (87) demonstrates that

* the neglected relativistic term a 2B/at2 is small of order R-2 <<<< 1, whereas the

calculated electromagnetic fields in the conductor are of order B - E MR0 (Eqs.

(65) - (67)], and the external electromagnetic transients are of order B+ -

and E + MR0 [Eqs. (73) - (76)].

9
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I
Thus, consistent electromagnetic field solutions for the regions in and

outside of the accelerated conductor have been obtained within the parabolic

diffusion approximation, which satisfy the boundary conditions for the conti-

nuity of the tangential electric and magnetic fields. If an accuracy of higher

order R-2 is to be achieved, then the hyperbolic diffusion equation (83) has to

be used. For non-relativistic conductor motions, Jvj 4< c, however, an accuracy

of order R-I is completely sufficient. The mathematical advantages of the para-

bolic diffusion equation become obvious if it is used in connection with (time-

dependent) moving boundary conditions (magnetic flux compressors, electromagnetic

induction generators, etc.), which are extremely difficult to treat for the hyper-

bolic diffusion equation.
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ELECTRON HEATING IN PLASMAS BY HIGH-FREQUENCY ELECTROMAGNETIC WAVES
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Michelson Laboratory, Naval Weapons Center, China Lake, CA 93555

ABSTRACT

The heating rate of electrons in laser-irradiated plasmas is derived

from the quantum-mechanically extended Vlasov equation. The heating of

electrons is shown to be due to (i) the electron velocity space diffusion

by the plasma waves, which are induced by the laser field (classical tur-

bulent heating), (ii) the microscopic quantum-mechanical interaction

between each electron and the laser field in the electric field of the

plasma waves (collisionless inverse bremsstrahlung), and (iii) collisio-

nal inverse bremsstrahlung in the static plasma field. A quasilinear equa-

tion for the changes of the electron distribution function by these three

jconcomitant mechanisms is derived and the heating rates of the electrons
are calculated. It is shown that the collisionless inverse bremsstrahlung

I is dominant for hot plasmas in most experimertal cases. The so-called anomalous

SIi heating is identified as being due to collisionless inverse bremsstrahlung,

and is explicitly expressed in terms of the wave number of the plasma wave

I and the plasma parameters, when the turbulence is due to the ion acoustic

instability and is stabilized by ion trapping.

I
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INTRODUCTION

If a laser beam is injected into plasma, the energy of the laser field

is transferred to the electrons by the following mechanisms:

(i) In part, the laser radiation is transformed into plasma waves through

interactions with electrons or the already existing plasma waves. Then,

energy flows from plasma waves to electrons by Landau damping, which diffuses

the electrons in velocity space. This mechanism is known not only as the only

one heating mechanism caused by the plasma waves but also as the responsible

mechanism for the anomalously large heating of collisionless plasmas by la-

sers [1]. Hence, this mechanism has been called either turbulent heating

or anomalous heating by other authors [1,2,3]. However, we call it "classi-

cal turbulent heating" since this mechanism turnes out to be neither the sole

heating mechanism of the plasma waves nor the dominant cause for the so-called

anomalous heating.

(ii) The direct absorption of the laser radiation by the individual electrons

under the influence of the plasma waves (collisionless inverse bremsstrahlung)

[4].

(iii) The same process as collisionless inverse bremsstrahlung, but under the

influence of the static plasma field (collisional inverse bremsstrahlung) [5].

These three mechanisms are independent but can occur concomitantly as

one readily sees from the quantum-mechanically extended Vlasov equation (Kim -

Wilhelm equation).

[ The first systematic theory of the dissipation of an electromagnetic

wave in plasmas has been given by Dawson and Oberman [6]. However, since their

theory is based on the hydrodynamic momentum equation (force equation) of the
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electrons only, the heating of the electrons cannot be treated by their theory

in principle (only the over-all ohmic dissipation of the electromagnetic wave

energy, including scattering, can be determined). Furthermore, the application

of their theory is limited in the weak laser-intensity regime where anomalous

heating by laser-induced plasma waves does not exist.

Recently, Manheimer [7] has conjectured an equation for the heating of

the electrons in the laser-irradiated plasma by adding a phenomenological term

for the anomalous heating to the energy equation of the electrons [7,8]. The

latter appears to have been guessed from the Vlasov equation without taking in

account properly the laser field. The term for the so-called anomalous heating,

which is supposed to consider heating by collisionless inverse bremsstrahlung,

is purely phenomenological, i.e., is not derived from first principles.

For these reasons, herein the equation for the heating rate of the elec-

trons of the plasma in the field of high-frequency electromagnetic waves is

derived from the quantum-mechanically extended Vlasov equation. The quantum-

I mechanically extended Vlasov equation is obtained from the ordinary classical

Vlasov equation by replacing the term for the change of the electron distri-

I" bution due to acceleration (or deceleration) of the electrons by the laser

radiation through a term representing the classical limit of the change in

the electron distribution due to absorption (or emission) of laser quanta [9].

[ The equation for the heating rate of electrons here gives the detailed features

as to how and what amount of the energy of the laser radiation is transferred to

the electrons. Especially the dominant mechanism for the anomalous heating of

collisionless plasmas by lasers is clearly revealed by this equation.

9I
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,0 [.BASIC EQUATIONS

We begin by adopting the set of Viasov equations to describe the change

of the electron distribution in the (-r,v) space, and the time-dependent Schroe-

dinger equation to describe the dynamics of the individual electrons in the r-

space. The ions are regarded as a set of randomly distributed fixed scatters.

We assume that the laser light is a circularly polarized electromagnetic

wave propagating in the z-direction. The spatial dependence of this electro- Z_

magnetic wave is neglected since the wave length of the electromagnetic wave

is assumed to be much longer than that of the plasma waves. Under these

assumptions, the field equations of the plasma are (Gaussian units):

5 t --- m e.m. -4

47r 1 e 4 ef d v - ZeJ6 (r r ) (2)

UJ

i- =  (l/1 / 2m V+ -1)2 -e (3)
U

where gte

E e.m. cat i (4)

A(t) - Ao0(i coswt + sinwt) • (5)

d(nrt) is the potential of the plasma field (the plasma wavel s the static

plasma field). The subscript e.m. is an abbreviation for "electromagnetic".

and the other symbols have e the usual meaning.

Vf -7 P. -M af

! -,0

at + ~ 4. m ~m. -
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The potential of the plasma field can be expanded in a double Fourier

series,

0(r,t) - . (6)

(For the case that the static plasma field is negligible, 0(0,t) can be ex-

panded in a single Fourier series since in this case t and Q are interrelated

by the dispersion relation). Since 0(6,t) is real. we have *(-4,-Q)

After substituting Eqs. (5) and (6) into Eq. (3), we solve for the tran-

sition probability amplitude from the resulting equation by means of first-

order perturbation theory [4,5] where 0 is the pertubing potential. The tran-

sition probability amplitude from a state I with momentum pl to a state 2 with

momentum p2 of the electron is [4,5]

nsin[(- - nw)T]a I--2) 2e e-ic' e in6 i (X/w) ( (7)
a(l (c2) --- e / n-,-T) e J / /) - -w (

n#O

where

2 2
X - eEok1 /m ' c p  - p )/2m (8)

6 is the azimuthal angle of k, i.e., - (ki ,6,kz), and c' is a real constant,

which drops out since exp(-ic') does not affect the transition probability.

The subscript i refers to the direction perpendicular to the direction of pro-

pagation of the electromagnetic wave, and E0 is the electric field amplitude

[of the electromagnetic wave.
From Eq. (7) we see that the transition probability per unit time for the

transition from state 1 to state 2 (with the absorption or the emission of pho-

tons) is
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T 2) - Tr(l, 2 
=v la (1. 2) 2 /2T

T(

'2 2

2rek 2 T(X1w)6 (e - n ) (9)

Q nff-o

n@O

In the derivation of Eq. (9), we assumed that there are no phase relations be-

tween different components of the plasma field.

The change of the electron distribution due to the absorption or emission

of photons of the electromagnetic wave [4,5] is

[3f(v2)/Vat] e...- J[T(1 , 2)f( vl) - T(2 4. 1)f(,v2) = T r(;1',V"2 )[f(,Vl) - (2) t.m " 1 -=1-

(10)
where

V Pi/m " 2w1m (n /L ,n /L ,n /L , nx,n y,nz  integers,

is quantized (Lx,L y,Lz are the x-,y-,z-dimensions of the plasma, respectively).

In Eq. (1), (e/m)l .af/) is the rate of change in the number of electrons

per unit volume in the (rv)space due to acceleration (or deceleration) of elec-

trons by the laser field. From the quantum-mechanical viewpoint, the acceler-

ation of an electron by the spatially uniform laser field is possible only by

absorption (or emission) of the laser photons in the presence of another field

which is the plasma field in our situation. Hence, (e/m)em.f/a is equal

to the classical limit (h ) 0) of the rate of change in the mumber of electrons
per unit volume in the (', ) space due to the absorption (or emission) of the

[ laser photons by the electrons under the influence of the plasma field ("inverse

bremastrahlung"). Accordingly, by using Eqs. (1), (3) - (6), and the same meth-

ods as in Ref. 5 and 6, we obtain the quantum-mechanical Vlasov equation, which

is valid up to second order in 0:
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I I
f + . f + a~. fT / == (-b)i.b. , (1a r v

where

a f (v) lira T (-' -)[f (-') - f(- )a t i.b.

2 e v + 66 "v 2

n#O

(12)

with v - -t/k. The subscript i.b. is an abbreviation for "inverse bremsstrah-

lung". In the derivation of Eq. (12), v . , and (- ,-Q) *( , )* havebenuedt ane uttetem,- vk , k
-k

been used to cancel out the terms, which change their signs as (t,sl,n) changes

to (--Q,-n), in the summation over t,o, and n.

Equation (11) is the desired Vlasov equation of the electrons in the

electromagnetic field and the plasma field, in which the term (af/at)i.b. con-

siders all interactions of the electrons with electromagnetic field. It should

be noted that the presented derivation of Eq. (11) is based on first principles

(Vlasov and Schroedinger equations in electromagnetic and plasma fields).

ISince Eq. (11) is valid up to the second order in 4, we can apply to this

equation an analogy to the derivation of the quasilinear equation for the electron

distribution in the absence of the electromagnetic wave [10,11]. The result,

i.e., the quasilinear equation for changes in the electron distribution in the

presence of the electromagnetic wave, is by Eq. (11)

af (iL (af
we 5- : -c.t. + (T)i.b. (13)

2 2 a.. _ _( f/_ _ )] (14)
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is the change in the electron distribution associated with the diffusion in

the electron-velocity space due to the acceleration of the electrons by the

electric field of the plasma waves (or the change in the electron distribu-

tion by classical turbulent heating). The subscript c.t. is an abbreviation

for "classical turbulent heating", and y > 0 is infinitesimal. In Eqs. (13)

and (14), the spatial average of the actual distribution function is desig-

nated as f, and the same simplification in notation is adopted in the fol-

lowing, where there is no chance of confusion.

,I0
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HEATING RATE OF ELECTRONS IN COLLISIONLESS PLASMA

The heating rate of the electrons per unit volume under the influence

of the external electromagnetic and internal plasma fields is by microscopic

definition

a<f f 3<e 3<f

f d v - 2 (v + 31 +
atv - at(i.b. t'c.t. at i.b. at c.t. (15)

where N is the unperturbed electron density. In Eq. (15), the first term is

the heating rate of the electrons per unit volume by inverse bremsstrahlung,

and the second term is that by classical turbulent heating, i.e., the rate of

energy transfer to the electrons from the plasma waves by velocity-space dif-

fusion.

We model the spatial average of the electron distribution as

f-3/) 2-2 + ,- )-L. ( -;- 3)' (16)
f - (2vVe) exp[- 2v2  3Nmv4  v2Q2

e e e

where the hydrodynamic velocity u and heat flux Q are induced by the laser field.

In the appendix we calculate the second term of Eq. (15) as

-e2  2 -' )2

ex[

at c.t. (2 2 1It~) es~ (- 2 2-
IN 2vek-

The calculation of the first term by means of Eqs. (12), (15), and (16)

is elementary, and gives
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2 I j (k Q j f jI II V m . 2I

, - 1

2 W k k av) 23fm kQ n=- k
nO

2 ir 1/2 Ne A Otnwt-')I
-1 Nek J (j)exp 2 (lnw - U)
mve t 1 n=- 2v k

{a+ - t- + A . 2h [1 " +  ; '  ~ I
222 - 4 -ku 2 1 Q+nw-t*4 (18)

222v k v k3
NmvkQ e e

Equations (17) and (18) can be used irrespective of the origin of the

plasma field as long as the strength of this field is so small that the resul-

ting perturbation of the electron distribution can be adequately treated by

means of first-order perturbation theory. Bearing this in mind, we reduce

the expression of the heating rate to a simpler form for the cases of small

and large X/w.

(i) X/w 4< 1: In this case, the laser-induced current and heat flux

can be neglected. Then, by means of the same approach used to derive Eqs. (1)

- (15) of Ref. 6, we ontain from Eqs. (1) and (2)tai~
(r t) (2 T) 3 Zeit "[S() - C(k)*e- eiwt + C(I)ei e - i (19)

V

where -t.4[.s(t) - e l e-ir ' 0 (20)

2r2 2 2 e, (0
27r2(k2 + k;) J

- -it~r 9  1 ___

Ct) -eL (j2 /~-L 1 1 1*(21)
w2 w D(kO) D(k,w)

with

k2

D(k,) 1 + 2 W(s) s- v _ (22)
k e
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Here, D(k,w) is the longitudinal dielectric constant, V is the volume of the

plasma system, kD - p/ve is the Debye wave number, w p the plasma frequency,

and W(s) is the plasma function given in the appendix.

Designating by *i (r) the Coulomb field potential at r due to an ion at
DesiandatntheD

rj, and by XD the Debye length, the first term of Eq. (19) becomes

r) -Z exp(- rr.I/X) , (23)

Hence, the first term of Eq. (19) is the static Coulomb field potential, re-

duced by the usual Debye shielding, acting on an electron due to all ions in

the plasma. This static plasma field gives rise to collisional inverse brems-

strahlung but does not contribute to classical turbulent heating. The second

and third terms are the potential of the laser-induced plasma waves, which can

contribute both to collisionless inverse brensstrahlung and classical turbulent

heating.

From Eqs. (18) - (21) and

- ) ---- 2j for A/w << 1 , (24)Sn (n) 2w

it is seen that the collisionless inverse bremsstrahlung is of the fourth

order in X/w, and can be neglected compared with the collisional inverse brems-

Istralung, which is of the second order, Hence, up to the lowest order in X/w,

: •we obtain from Eqs. (18) - (21), and (24),

3<C> (21r)7/2 2e
2 2d3k 1 .,,2 2 2

3t i.b. 3- k-4 V %w e
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The expression for 4j ( ) given in Eq. (23) shows that (r) decreases

very fast to zero as r-rjl /XD + -. This decrease is mathematically brought

about by representing discrete phenomena through smoothly continuous functions;

C( ) is in reality zero for Ir-rj >" XD . This corresponds to S(k) - 0 for

k << kD. Considering this behavior of S(t) and Eq. (20), we can explicitly

evaluate Eq. (25) as

3  2 22 2e6 2 2

S4 26 22 k D dk k exp(-w /2v k ) 4 1/2 ZeEN
4i) 2122 e 32N(z)

t l'b" m 3v W (k 2 +k2 )2 3 3 2
e 0 DV e

Where 
(26)

U(z) - fdx[x 3exp(-1/2x2)/Mx2+z2)2] , z = W /, (27)
0 P

with w the plasma frequency. The function U(z) is represented in Fig. 1.p

In the derivation of Eq. (26), we assumed the ion distribution to be

random so that

ll+

1 jexP(-i&k.r)12 - N (28)I "
since the large-amplitude ion wave cannot be induced by weak laser fields for

which X/w << 1 [12].

[ From Eqs. (17) and (19), we obtain for the heating rate per unit volume

by classical turbulent heating, up to the lowest order in X/W,

a~e>7/2 e2N d k C(t)f2 2 2 2 2(21)7 -exp(- /2v k) (29)at c.t. ;T3f ke e

Eq. (29) can be expressed more explicitly for the cases of hot and cold plas-

mas. In this connection, it is noted that electromagnetic waves propagate
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in plasmas only when their frequency is greater than the plasma frequency.

Accordingly,

ve < WVe/W p = /k D (30)

For hot plasmas for which v >> w/k, Eq. (22) becomes, to the lowest or-e

der in u/kV e, such that [i/D(k,0) - l/D(k,w)] is not zero,

D(k,w) - 1 + k ;/2 - )--k (31)
e

Also, from ve >> w/k and Eq. (30), we have k >> kD. This means that the

plasma behaves, as far as the plasma waves are concerned, like a system of free

individual particles [13].

Substituting Eqs. (21) and (31) into Eq. (29) and using k >> k yields

Z e 6E 2N (2w) 312ze6E2N2
(1<(2 1i. /2 0 dx x - o

-t--)c.t. 3 3 2 24 332(32)
m v 1 (i + 144m v Wep ep

By comparison of Eq. (32) with Eq. (26), it is recongized that the hea-

ting rate of the electrons by inverse bremsstrahlung is slightly greater than

that by classical turbulent heating for w = w .~p

For cold plasmas for which v < «/ << u/k, Eq. (22) becomes, to the
e D

lowest order in v k/w such that [i/D(k,0) - i/D(k,w)] in Eq. (21) is not zero,

2 2

Accordingly, Eq. (29) reduces to

Z2e6E
2N2  w4

~~>0.. 4(n 1/2 32 2 22V(z) , (34)

e p
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where

V(z) f dx[exp(-l/2x 2)/x(x 2+z )2  (35)
0

The function V(z) is represented in Fig. 2.

Equation (34) appears to indicate that classical turbulent heating by

the plasma wave becomes resonant as w - . However, Eq. (34) should be ques-

tioned since Eq. (38) is derived by using Eqs. (19) and (21), which are derived

from the collisionless Boltzmann equation (or Vlasov equation), even though the

considered plasmas are cold, and consequently, collisional.

Comparison of the expression for the heating rate by inverse bremsstrah-

lung, i.e., Eq. (26) with that found by Seely and Harris [Eq. (15) of Ref. 5]

shows that our result is the same as theirs except for a factor U(z)/lnA, where

lnA is the Coulomb logarithm,

inA - ln(l 2 rNX) (36)

Since the Coulomb logarithm for laboratory plasmas is about 10 to 20 and U(z)

is less than 0.04, the value of the heating rate given by Eq. (26) is less than

about four-thousandth to two-thousandth of that given by Eq. (15) of Ref. 5.

This difference is due to the fact that Seely and Harris do not consider Debye

shielding, whereas our result contains Debye shielding brought about by the

collective dynamics of the electrons (Eq. (19)].

(ii) /w - eEk 1 /2 >> 1: For this case, we can use no longer Eqs. (19)

- (21) for the plasma field potential * even if there is no other perturbation
Sexcept the electromagnetic field. However, we can readily surmise that the

collisionless inverse bremsstrahlung is stronger than the collisional one for

Iw A >> 1. This is because the second and third terms of Eq. (19), which
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give rise to collisionless inverse bremsstrahlung, become important compared

to the first term, which produces collisional inverse bremsstrahlung, as W

increases (but still p < 1). For this reason, the result obtained by Seely

and Harris for the effective collision frequency in the case U >> 1 (Eq. (22)

of Ref. 5] is questionable since they take into account only collisional in-

verse bremsstrahlung.

Except for increasing p (usually by increasing the intensity of the elec-

tromagnetic field), the collisionless inverse bremsstrahlung becomes more impor-

tant compared with the collisional one with increasing electron temperature.

This is because the mean free path of the electron becomes larger with increasing

electron energy. Accordingly, the collective effects which are enhanced by a

large number of instabilities (not caused by the local electromagnetic field)

become more donant than the effect caused by the static ions. Hence, even if

p < 1, the collisionless inverse bremsstrahlung may dominate the collisional one

for very hot plasmas if there are causes of turbulence other than the local elec-

tromagnetic field. The latter case will be treated in the next section.

For p - X/w > 1, we can write approximately (51

[
2

)6 -k )+ k. I)] " (37)
n k k k k

n#O

Substituting Eq. (37) into the first relation of Eq. (18), we find for hot

plasmas, v e  n/k, A/k,j e

< . b. 3 k1/2 Ne2  22 22 2

I e• (38)
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Comparison of Eq. (38) with Eq. (17) indicates that the heating of the

electrons by collisionless inverse bremsstrahlung is greater than that by

classical turbulent heating where the following conditions hold: 4 1 and

V e >> S/k, X/k (hot plasmas).
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ANOMALOUS HEATING RATE

Heating by collisionless inverse bremsstrahlung, which is the main heating

mechanism in laser fusion, is usually called "anomalous" heating. This phenomenon

requires a correct quantum-mechanical treatment of collisionless inverse brems-

strahlung, as distinguished from the deficient classical approaches in Refs. [6,7,

8,12,13]. From the experimental point of view, the heating rate is "anomalous" in

collisionless plasmas since it is unexpectively large compared with the classical

theories, which consider collision-dominated phenomena. In the following, the

significance of collisionless inverse bremsstrahlung is demonstrated by comparison

with the classical theory.

Equation (38) is valid irrespective of the causes of the electrostatic field.

In laser fusion, it is believed that the electrostatic field is developed by the

ion acoustic instability driven by the return current [7]. For this case, it is

known from computer simulations that the t-spectrum of the electrostatic field is

flared out in a cone of 45 to the direction of the return current [7,15-17]. Hence,

we can assume that k1 is of the order of k. Then, the condition p > 1 corresponds

to a laser intensity of I > 1012watt/cm2 for a neodymium laser. With presently

available laser powers, this condition is generally satisfied in most experiments

so that Eq. (38) is applicable to them.

ji Both computer simulations and analytical theories indicate that the ion

acoustic instability is "stabilized" by ion trapping [18-221. Hence, its intensity

level can be estimated on the basis of simple trapping arguments to be [7]

KT k 3T(

(k2 + k;)1the

where the wave spectrum of the turbulent electric field is modeled for a single

S wave having wave number k, frequency 0, and a propagation angle of 135* with the
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direction of the laser beam. By incorporating the estimate (39) for the

saturated turbulence level into Eq. (38), we obtain the anomalous heating

rate for hot plasmas with v e>> /k:

2 2
eD

e<> eNE kV k D 3Ti1 4

-t0anom. 0 2 2 k -Te (40)d C2 (k2 _ 21/2

By Eqs. (26), and (40), the ratio R of the anomalous heating rate to the

heating rate by the collisional inverse bremsstrahlung in very hot (collision-

less) plasmas is, assuming Te Ti and k - k/2:

RQNAD/U(z) z 6N ND 4rX N/3 , (41)

where N is the number of electrons in a Debye sphere [231. By definition, in

D
"collisionless plasmas" the collective behavior far dominates the collisional

effects (23], and ND >>> 1. Thus, by Eq. (41) we demonstrate the significance

of our collisionless quantum-mechanical theory compared with the classical col-

lisional theories and explain the observed anomalous heating rate in experiments,

j R 6ND >>> 1.
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CONCLUSION

Under the condition that the field strength of the electromagnetic wave is

below the threshold above which strong turbulence is developed (so that the first-

order perturbation theory would no longer be appropriate) we have obtained the fol-

lowing results:

(1) From the set of Vlasov and Schroedinger equations, the heating rate of the

electrons in the electromagnetic field is systematically derived in terms of the elec-

trostatic field potential, which is produced by the static ions and the collective

dynamics of electrons in the self-consistent manner. The Vlasov equation is genera-

lized by formulating in it it . f/3v as a quantum-mechanical interaction integral.
m e.m.

(2) Especially for p < 1, the electrostatic field potential * in the heating

rates is expressed in terms of the field strength Eo , frequency w , and wave vector

of the electromagnetic wave for both hot and cold plasmas.

(3) For very hot plasmas with v >' Q/k,X/k, it is shown that the heating of thee

electrons by inverse bremsstrahlung is considerably stronger than that by Landau

damping of electrostatic waves. Furthermore, it is shown that for U < 1 the above

statement is true regardless of the magnitude of the electron temperature.

1 (4) The anomalous heating observed in the experiments is identified as the

r hating by inverse collisionless bremsstrahlung, and explicitly formulated when the

turbulence is developed by the ion acoustic instability and "stabilized" by ion

Itrapping.
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I APPENDIX

ICombination of Eqs. (14) - (16) yields

< =-iN e 2 1kI,((1,)12 (2r)-1/2-t -.t. mv Q k(,)

x/+ dx ex(-x2/2) ~2+ 1 (i--3 3 5x

x - -y 2 /2 [2 +  1 ) - 6x3 + 3x)] (Al)- z- 3Nmv 3 Q2  k
e

Integration over x in Eq. (Al) is accomplished by using the following

formulae:

(21) dx x exp(-x 2 /2) . W(z) (A2)(2 -I2= x - z - iY

(27)-1/2 f+dx x 2exp(-x 2/2) . zW(z) 9 (A3)- x - z - 17

(27)-1/2 f+dx x 3exp(-x 2/2) . 1 + z2 W(z) (A4)- x X- Z - 7

(2)-/2 f+dx xe - 3 + z2 [1 + z2 W(z)] , (A5)1 -- z - i

I where W(z) is the plasma function (24] given by

2 4 (-I)n+lzn+2[ j(lt)z/2 exp(-3 -L) + ([ - z2 + L- + .. ],for Izi < 1;

w(z) - (A6)

1/2 z ,xp-! 2 1+ 3+ ... + (2n-1)1 + .. for [zI > 1.

Substitution of Eqs. (A2) - (A6) into Eq. (Al) and obliteration of all odd

terms for both k and n in the summation over k and Q gives Eq. (17).
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